(01)
142 ∃x(Fx)├ ∃x∃y(Fx&Fy)
1 (1) ∃x(Fx) A
2(2) Fa A
2(3) Fa&Fa 22&I
2(4) ∃y(Fa&Fy) 3EI
2(5)∃x∃y(Fx&Fy) 4EI
1 (6)∃x∃y(Fx&Fy) 125EE
(この結果は事実上、強化して相互導出可能にすることができる。)この連式の妥当性から、
ひとつだけの対象がFを持っているならば、∃x∃y(Fx&Fy)ということが帰結する。
言い換えると、相異なる変数「x」と「y」を用いる場合に、そのことから、それに対応する異なった対象が存在する、
ということは、帰結しないのである(E.J.レモン著、論理学初歩、竹尾治一郎・浅野楢英、1973年、210頁)。
然るに、
(02)
{xの変域}={a、b、c}
であるとする。
従って、
(02)により、
(03)
① ∃x(Fx)
② ∃y(Fy)
③ Fa∨Fb∨Fc
に於いて、
①=② であって、
①=③ である。
従って、
(03)により、
(04)
① ∃x{∃y(Fx&Fy)}
②{(Fa&Fa)∨(Fa&Fb)∨(Fa&Fc)}∨{(Fb&Fa)∨(Fb&Fb)∨(Fb&Fc)}∨{(Fc&Fa)∨(Fc&Fb)∨(Fc&Fc)}
に於いて、
①=② である。
然るに、
(05)
「冪等律」により、
①(Fa&Fa)=Fa
②(Fb&Fb)=Fb
③(Fc&Fc)=Fc
従って、
(04)(05)により、
(06)
① ∃x{∃y(Fx&Fy)}
②{Fa∨(Fa&Fb)∨(Fa&Fc)}∨{(Fb&Fa)∨Fb∨(Fb&Fc)}∨{(Fc&Fa)∨(Fc&Fb)∨Fc}
に於いて、
①=② である。
然るに、
(07)
「交換法則」により、
①(Fa&Fb)=(Fb&Fa)
②(Fa&Fc)=(Fc&Fa)
③(Fb&Fc)=(Fc&Fb)
従って、
(06)(07)により、
(08)
① ∃x{∃y(Fx&Fy)}
②{Fa∨(Fa&Fb)∨(Fa&Fc)}∨{Fb∨(Fb&Fc)}∨{Fc}
に於いて、
①=② である。
然るに、
(09)
「交換法則・結合法則」により、
②{Fa∨(Fa&Fb)∨(Fa&Fc)}∨{Fb∨(Fb&Fc)}∨{Fc}
③{(Fa∨Fb∨Fc)∨(Fa&Fb)}∨{(Fa&Fc)∨(Fb&Fc)}
に於いて、
②=③ である。
然るに、
(10)
1 (1){(Fa∨Fb∨Fc)∨(Fa&Fb)}∨{(Fa&Fc)∨(Fb&Fc)} A
2 (2){(Fa∨Fb∨Fc)∨(Fa&Fb)} A
3 (3) (Fa∨Fb∨Fc) A
4 (4) (Fa&Fb) A
4 (5) Fa 4&E
4 (6) Fa∨Fb 5∨I
4 (7) (Fa∨Fb∨Fc) 6∨I
2 (8) (Fa∨Fb∨Fc) 23347∨E
9 (9) {(Fa&Fc)∨(Fb&Fc)} A
ア (ア) (Fa&Fc) A
ア (イ) Fa ア&E
ア (ウ) Fa∨Fb イ∨I
ア (エ) (Fa∨Fb∨Fc) ウ∨I
オ (オ) (Fb&Fc) A
オ (カ) Fb オ&E
オ (キ) Fa∨Fb カ∨I
オ (ク) (Fa∨Fb∨Fc) キ∨I
9 (ケ) (Fa∨Fb∨Fc) 9アエオク∨E
1 (コ) (Fa∨Fb∨Fc) 1289ケ∨E
従って、
(08)(09)(10)により、
(11)
① ∃x{∃y(Fx&Fy)}
② (Fa∨Fb∨Fc)
に於いて、
①⇒② である。
従って、
(03)(11)により、
(12)
① ∃x{∃y(Fx&Fy)}
② ∃x(Fx)
に於いて、
①⇒② である。
従って、
(01)(12)により、
(13)
142 ∃x(Fx)┤├ ∃x∃y(Fx&Fy)
は、相互導出可能にすることができる。
令和6年8月23日、毛利太。
0 件のコメント:
コメントを投稿