2024年8月24日土曜日

「象は鼻が長い(兎は耳が長い)」の「述語論理」。

(01)
1      (1) ∀x{兎x→∃y(耳yx&長y)&∀z(~耳zx→~長z)} A
 2     (2) ∀x{象x→∃z(鼻zx&~耳zx&長z)}         A
  3    (3) ∃x(兎x&象x)                      A
1      (4)    兎a→∃y(耳ya&長y)&∀z(~耳za→~長z)  1UE
 2     (5)    象a→∃z(鼻za&~耳za&長z)          2UE
   6   (6)    兎a&象a                       A
   6   (7)    兎a                          6&E
   6   (8)       象a                       6&E
1  6   (9)       ∃y(耳ya&長y)&∀z(~耳za→~長z)  47MPP
1  6   (ア)                  ∀z(~耳za→~長z)  9&E
1  6   (イ)                     ~耳ba→~長b   アUE
 2 6   (ウ)       ∃z(鼻za&~耳za&長z)          58MPP
    エ  (エ)          鼻ba&~耳ba&長b           A
    エ  (オ)              ~耳ba              エ&E
    エ  (カ)                   長b           エ&E
1  6エ  (キ)                          ~長b   イオMPP
1  6エ  (ク)                   長b&~長b       カキ&I
12 6   (ケ)                   長b&~長b       ウエクEE
123    (コ)                   長b&~長b       36ケEE
12     (サ)~∃x(兎x& 象x)                     3コRAA
     シ (シ)  ~(兎a→~象a)                     A
     シ (ス) ~(~兎a∨~象a)                     シ含意の定義
     シ (セ)    兎a& 象a                      ス、ド・モルガンの法則
      シ (ソ) ∃x(兎x& 象x)                     セEI
12   シ (タ)~∃x(兎x& 象x)&∃x(兎x& 象x)          サソ&I
12     (チ) ~~(兎a→~象a)                     シタRAA
12     (ツ)   (兎a→~象a)                     チDN
      テ(テ)        象a                      A
      テ(ト)      ~~象a                      テDN
12    テ(ナ)   ~兎a                          ツトMTT
12     (ニ)    象a→~兎a                      テナCP
12     (ヌ) ∀x(象x→~兎x)                     ニUI
従って、
(01)により、
(02)
(ⅰ)∀x{兎x→∃y(耳yx&長y)&∀z(~耳zx→~長z)}。然るに、
(ⅱ)∀x{象x→∃z(鼻zx&~耳zx&長z)}。従って、
(ⅲ)∀x(象x→~兎x)。
といふ『推論』、すなはち、
(ⅰ)すべてのxについて{xが兎であるならば、あるyは(xの耳であって、長く)、すべてのzについて(zがxの耳ではないならば、zは長くない)}。然るに、
(ⅱ)すべてのxについて{xが象であるならば、あるzは(xの鼻であって、xの耳ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが象であるならば、xは兎ではない)。
といふ『推論』は、「妥当」である。
従って、
(02)により、
(03)
兎=象
耳=鼻
象=兎
鼻=耳
といふ「代入(置き換へ)」により、
(ⅰ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。然るに、
(ⅱ)∀x{兎x→∃z(耳zx&~鼻zx&長z)}。従って、
(ⅲ)∀x(兎x→~象x)。
といふ『推論』、すなはち、
(ⅰ)すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)、すべてのzについて(zがxの鼻ではないならば、zは長くない)}。然るに、
(ⅱ)すべてのxについて{xが兎であるならば、あるzは(xの耳であって、xの鼻ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない)。
といふ『推論』は、「妥当」である。
従って、
(04)
(ⅰ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。然るに、
(ⅱ)∀x{兎x→∃z(耳zx&~鼻zx&長z)}。従って、
(ⅲ)∀x(兎x→~象x)。
ではなく
(ⅰ)∀x{象x→∃y(鼻yx&長y)}。然るに、
(ⅱ)∀x{兎x→∃z(耳zx&~鼻zx&長z)}。従って、
(ⅲ)∀x(兎x→~象x)。
であるならば、すなはち、
(ⅰ)すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)、すべてのzについて(zがxの鼻ではないならば、zは長くない)}。然るに、
(ⅱ)すべてのxについて{xが兎であるならば、あるzは(xの耳であって、xの鼻ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない)。
であるならば、この場合、
(ⅰ)すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)}。然るに、
(ⅱ)すべてのxについて{xが兎であるならば、あるzは(xの耳であって、xの鼻ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない)。
といふ『推論』は、「妥当」ではない
従って、
(04)により、
(05)
(ⅰ)象は鼻長い。然るに、
(ⅱ)兎の耳は鼻ではないが、長い。従って、
(ⅲ)兎は象ではない。
といふ『推論』が、
(ⅰ)すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)}。然るに、
(ⅱ)すべてのxについて{xが兎であるならば、あるzは(xの耳であって、xの鼻ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない)。
ではなく
(ⅰ)∀x{象x→∃y(鼻yx&長y)}。然るに、
(ⅱ)∀x{兎x→∃z(耳zx&~鼻zx&長z)}。従って、
(ⅲ)∀x(兎x→~象x)。
といふ「意味」であるならば、
(ⅰ)象は鼻長い。然るに、
(ⅱ)兎の耳は鼻ではないが、長い。従って、
(ⅲ)兎は象ではない。
といふ『推論』は、「妥当」ではない
従って、
(03)~(05)により、
(06)
① 兎は耳長い。
② 象は鼻長い。
といふ「日本語」は、それぞれ、
① ∀x{兎x→∃y(耳yx&長y)&∀z(~耳zx→~長z)}。
② ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
といふ「意味」でなければ、ならない。
従って、
(06)により、
(07)
③ AはBCである。
といふ「日本語」は、
③ ∀x{Ax→∃y(Byx&Cy)&∀z(~Bzx→~Cz)}。
といふ「意味」でなければ、ならない。
従って、
(07)により、
(08)
例へば、
③ 私は膝痛い。
といふ「日本語」は、
③ ∀x{私x→∃y(膝yx&痛y)&∀z(~膝zx→~痛z)}。
といふ「意味」でなければ、ならない。
令和6年8月24日、毛利太。

0 件のコメント:

コメントを投稿