「昨日(令和6年12月17日)の記事」を書き直します。
(01)
(ⅰ){xの変域}={aさん、bさん、cさん}
(ⅱ) 述語文字F=フランス人である。
であるとして、
① ∃x(Fx)
②(Fa∨Fb∨Fc)
③ あるxはFである。
④(aさんはフランス人であるか、または、bさんはフランス人であるか、または、cさんはフランス人である)。
に於いて、
①=②=③=④ である。
然るに、
(02)
(ⅰ){xの変域}={aさん、bさん、cさん}
(ⅱ) 述語文字F=フランス人である。
であるとして、
⑤ ~∀x(~F)
⑥ ~(~Fa&~Fb&~Fc)
⑦ すべてのxがFでない、というふわけではない。
⑧(aさんがフランス人ではなく、その上、bさんもフランス人ではなく、その上、cさんもフランス人でない)といふことは無い。
に於いて、
⑤=⑥=⑦=⑧ である。
然るに、
(03)
(ⅰ)
1 (1) P∨ Q∨ R A
2 (2) ~P&~Q&~R A
1 (3) (P∨ Q)∨R 1結合法則
4 (4) (P∨ Q) A
5 (5) P A
2 (6) ~P 2&E
2 5 (7) P&~P 56&I
5 (8)~(~P&~Q&~R) 27RAA
9 (9) Q A
2 (ア) ~Q 2&E
2 9 (イ) Q&~Q 9ア&I
9 (ウ)~(~P&~Q&~R) 29RAA
4 (エ)~(~P&~Q&~R) 4589ウ∨E
オ(オ) R A
2 (カ) ~R 2&E
2 オ(キ) R&~R オカ&I
オ(ク)~(~P&~Q&~R) 2キRAA
1 (ケ)~(~P&~Q&~R) 34エオク∨E
12 (コ)~(~P&~Q&~R)&
(~P&~Q&~R) 2ケ&I
1 (サ)~(~P&~Q&~R) 2コRAA
(ⅴ)
1 (1) ~(~P&~Q&~R) A
2 (2) ~( P∨ Q∨ R) A
3 (3) P A
3 (4) P∨ Q 3∨I
3 (5) P∨ Q∨ R 34∨I
23 (6) ~( P∨ Q∨ R)&
( P∨ Q∨ R) 25&I
2 (7) ~P 36RAA
8 (8) Q A
8 (9) P∨ Q 8∨I
8 (ア) P∨ Q∨ R 9∨I
2 8 (イ) ~( P∨ Q∨ R)&
( P∨ Q∨ R) 2ア&I
2 (ウ) ~Q 8イ&I
2 (エ) ~P&~Q 7ウ&I
オ(オ) R A
オ(カ) Q∨ R オ∨I
オ(キ) P∨ Q∨ R ∨I
2 オ(ク) ~( P∨ Q∨ R)&
( P∨ Q∨ R) 2キ&I
2 (ケ) ~R オクRAA
2 (コ) ~P&~Q&~R エケ&I
12 (サ) ~(~P&~Q&~R)&
(~P&~Q&~R) 1コ&I
1 (シ)~~( P∨ Q∨ R) 2サRAA
1 (ス) ( P∨ Q∨ R) シDN
従って、
(03)により、
(04)
① P∨ Q∨ R
⑤ ~(~P&~Q&~R)
といふ「命題論理式」に於いて、
①=⑤ は「ド・モルガンの法則」である。
従って、
(04)により、
(05)
P=Fa
Q=Fb
R=Fc
といふ「代入」により、
① ( Fa∨ Fb∨ Fc)
⑤ ~(~Fa&~Fb&~Fc)
といふ「命題論理式に於いて、
①=⑤ は、「ド・モルガンの法則」である。
従って、
(01)~(05)により、
(06)
① ∃x(Fx)
②(Fa∨Fb∨Fc)
③ あるxはFである。
④(aさんはフランス人であるか、または、bさんはフランス人であるか、または、cさんはフランス人である)。
⑤ ~∀x(~F)
⑥ ~(~Fa&~Fb&~Fc)
⑦ すべてのxがFでない、というふわけではない。
⑧(aさんがフランス人ではなく、その上、bさんもフランス人ではなく、その上、cさんもフランス人でない)といふことは無い。
に於いて、
①=②=③=④=⑤=⑥=⑦=⑧ は、「ド・モルガンの法則」である。
従って、
(07)により、
(08)
(ⅰ)
1 (1) ∃x( Fx) A
2 (2) ∀x(~Fx) A
3(3) Fa A
2 (4) ~Fa 1UE
23(5) Fa&~Fa 34&I
3(6)~∀x(~Fx) 25RAA
12 (7)~∀x(~Fx) 13EE
(ⅴ)
1 (1) ~∀x(~Fx) A
2 (2) ~∃x( Fx) A
3(3) Fa A
3(4) ∃x( Fx) 1EI
23(5) ~∃x( Fx)&
∃x( Fx) 24&I
2 (6) ~Fa 35RAA
2 (7) ∀x(~Fx) 6UI
12 (8) ~∀x(~Fx)&
∀x(~Fx) 17&I
1 (9)~~∀x(~Fx) 28RAA
1 (ア) ∀x(~Fx) 9DN
といふ「述語計算」は、「ド・モルガンの法則」である。
従って、
(08)により、
(09)
① ∃x( Fx)=あるxはFである。
⑤ ~∀x(~Fx)=すべてのxがFでない、といふわけではない。
に於いて、
①=⑤ といふ「量化子の関係」は、「ド・モルガンの法則」である。
令和6年12月18日、毛利太。
0 件のコメント:
コメントを投稿