2024年12月18日水曜日

「ド・モルガンの法則と、命題論理と、述語論理と、量化子の関係」(Ⅱ)。

「昨日(令和6年12月17日)の記事」を書き直します。
(01)
(ⅰ){xの変域}={aさん、bさん、cさん}
(ⅱ) 述語文字F=フランス人である。
であるとして、
① ∃x(Fx)
②(Fa∨Fb∨Fc)
③ あるxはFである。
④(aさんはフランス人であるか、または、bさんはフランス人であるか、または、cさんはフランス人である)。
に於いて、
①=②=③=④ である。
然るに、
(02)
(ⅰ){xの変域}={aさん、bさん、cさん}
(ⅱ) 述語文字F=フランス人である。
であるとして、
⑤ ~∀x(~F)
⑥ ~(~Fa&~Fb&~Fc)
⑦ すべてのxがFでない、というふわけではない。
⑧(aさんがフランス人ではなく、その上、bさんもフランス人ではなく、その上、cさんもフランス人でない)といふことは無い。
に於いて、
⑤=⑥=⑦=⑧ である。
然るに、
(03) (ⅰ)
1     (1)   P∨ Q∨ R   A
 2    (2)  ~P&~Q&~R   A
1     (3)  (P∨ Q)∨R   1結合法則
  4   (4)  (P∨ Q)     A
   5  (5)   P         A
 2    (6)  ~P         2&E
 2 5  (7)   P&~P      56&I
   5  (8)~(~P&~Q&~R)  27RAA
    9 (9)      Q      A
 2    (ア)     ~Q      2&E
 2  9 (イ)   Q&~Q      9ア&I
    9 (ウ)~(~P&~Q&~R)  29RAA
  4   (エ)~(~P&~Q&~R)  4589ウ∨E
     オ(オ)         R   A
 2    (カ)        ~R   2&E
 2   オ(キ)      R&~R   オカ&I
     オ(ク)~(~P&~Q&~R)  2キRAA
1     (ケ)~(~P&~Q&~R)  34エオク∨E
12    (コ)~(~P&~Q&~R)&
          (~P&~Q&~R)  2ケ&I
1     (サ)~(~P&~Q&~R)  2コRAA
(ⅴ)
1    (1) ~(~P&~Q&~R)  A
 2   (2) ~( P∨ Q∨ R)  A
  3  (3)    P         A
  3  (4)    P∨ Q      3∨I
  3  (5)    P∨ Q∨ R   34∨I
 23  (6) ~( P∨ Q∨ R)&
          ( P∨ Q∨ R)  25&I
 2   (7)   ~P         36RAA
   8 (8)       Q      A
   8 (9)    P∨ Q      8∨I
   8 (ア)    P∨ Q∨ R   9∨I
 2 8 (イ) ~( P∨ Q∨ R)&
          ( P∨ Q∨ R)  2ア&I
 2   (ウ)      ~Q      8イ&I
 2   (エ)   ~P&~Q      7ウ&I
    オ(オ)          R   A
    オ(カ)       Q∨ R   オ∨I
    オ(キ)    P∨ Q∨ R   ∨I
 2  オ(ク) ~( P∨ Q∨ R)&
          ( P∨ Q∨ R)  2キ&I
 2   (ケ)         ~R   オクRAA
 2   (コ)   ~P&~Q&~R   エケ&I
12   (サ) ~(~P&~Q&~R)&
          (~P&~Q&~R)  1コ&I
1    (シ)~~( P∨ Q∨ R)  2サRAA
1    (ス)  ( P∨ Q∨ R)  シDN
従って、
(03)により、
(04)
①    P∨ Q∨ R
⑤ ~(~P&~Q&~R)
といふ「命題論理式」に於いて、
①=⑤ は「ド・モルガンの法則」である
従って、
(04)により、
(05)
P=Fa
Q=Fb
R=Fc
といふ「代入」により、
①  ( Fa∨ Fb∨ Fc)
⑤ ~(~Fa&~Fb&~Fc)
といふ「命題論理式に於いて、
①=⑤ は、「ド・モルガンの法則」である。
従って、
(01)~(05)により、
(06)
① ∃x(Fx)
②(Fa∨Fb∨Fc)
③ あるxはFである。
④(aさんはフランス人であるか、または、bさんはフランス人であるか、または、cさんはフランス人である)。
⑤ ~∀x(~F)
⑥ ~(~Fa&~Fb&~Fc)
⑦ すべてのxがFでない、というふわけではない。
⑧(aさんがフランス人ではなく、その上、bさんもフランス人ではなく、その上、cさんもフランス人でない)といふことは無い。
に於いて、
①=②=③=④=⑤=⑥=⑦=⑧ は、「ド・モルガンの法則」である。
従って、
(07)により、
(08)
(ⅰ)
1  (1) ∃x( Fx) A
 2 (2) ∀x(~Fx) A
  3(3)     Fa  A
 2 (4)    ~Fa  1UE
 23(5) Fa&~Fa  34&I
  3(6)~∀x(~Fx) 25RAA
12 (7)~∀x(~Fx) 13EE
(ⅴ)
1  (1) ~∀x(~Fx)  A
 2 (2) ~∃x( Fx)  A
  3(3)      Fa   A
  3(4)  ∃x( Fx)  1EI
 23(5) ~∃x( Fx)&
        ∃x( Fx)  24&I
 2 (6)     ~Fa   35RAA
 2 (7)  ∀x(~Fx)  6UI
12 (8) ~∀x(~Fx)&
        ∀x(~Fx)  17&I
1  (9)~~∀x(~Fx)  28RAA
1  (ア)  ∀x(~Fx)  9DN
といふ「述語計算」は、「ド・モルガンの法則」である。
従って、
(08)により、
(09)
①  ∃x( Fx)=あるxはFである。
∀x(Fx)=すべてのxがFでない、といふわけではない
に於いて、
①=⑤ といふ「量化子の関係」は、「ド・モルガンの法則」である。
令和6年12月18日、毛利太。

0 件のコメント:

コメントを投稿