(a)『返り点と括弧』については、『「返り点」と「括弧」(略8)(https://kannbunn.blogspot.com/2018/09/blog-post_17.html)』他もお読み下さい。
(b)『返り点』については、『「返り点」の「付け方」を教へます(https://kannbunn.blogspot.com/2018/01/blog-post_3.html)』他をお読み下さい。
(c)「(11月14日)の記事」を補足します。比較的長文であるものの、取りあへず、(24)から読まれても、かまひません。
(d)「述語論理の技術」を知りたい方は「論理学初歩、E.J.レモン、竹尾治一郎・浅野楢英 訳、1973年」をお読みください。
(01)
最初に、
(ⅰ)∀x{ 象x→ ∃y(鼻yx&長y)}。
(ⅱ)∀x{~∃y(鼻yx&長y)→~象x}。
(ⅲ)∀x{象x→∃y(鼻yx&長y)& ∀z(~鼻zx→~長z)}。
(ⅳ)∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx& 長z)}。
(ⅴ)∀x{象x→∃y(鼻yx&長y)&~∀z(~鼻zx→~長z)}。
(ⅵ)∀x{象x→∃y(鼻yx&長y)& ∃z(~鼻zx& 長z)}。
の「読み方(意味)」、すなはち、
(ⅰ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長い}。
(ⅱ)すべてxについて{あるyがxの鼻であって、そのyが長くないならば、xは象ではない}。
(ⅲ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、すべてのzについてzがxの鼻でないならばzは長くない}。
(ⅳ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
(ⅴ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、すべてのzについてzがxの鼻でないならばzは長くない、といふわけではない}。
(ⅵ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzはxの鼻でなく、尚且つ、zは長い}。
を確認します。
然るに、
(02)
(ⅰ)
1 (1) ∀x{象x→∃y(鼻yx&長y)} A
1 (2) 象a→∃y(鼻ya&長y) 1UE
3 (3) ~∃y(鼻ya&長y) A
4(4) 象a A
1 4(5) ∃y(鼻ya&長y) 23MPP
134(6) ~∃y(鼻ya&長y)&
∃y(鼻ya&長y) 35&I
1 4(7) ~象a 46RAA
1 (5) ~∃y(鼻ya&長y)→~象a 37CP
1 (6)∀x{~∃y(鼻yx&長y)→~象x} 5UI
(ⅱ)
1 (1)∀x{~∃y(鼻ya&長y)→~象a} A
1 (2) ~∃y(鼻ya&長y)→~象a 1UI
3 (3) 鼻a A
4(3) ~∃y(鼻ya&長y) A
1 4(5) ~象a 23MPP
134(6) 鼻a&~象a 35&I
13 (7) ~~∃y(鼻ya&長y) 46RAA
13 (8) ∃y(鼻ya&長y) 7DN
1 (9) 象a→∃y(鼻ya&長y) 38CP
1 (ア) ∀x{象x→∃y(鼻yx&長y)} 9UI
従って、
(02)により、
(03)
(ⅰ)∀x{ 象x→∃y(鼻yx& 長y)}。
(ⅱ)∀x{~∃y(鼻yx&長y)→~象x}。
といふ「対偶(Contraposition)」は「等しい」。
然るに、
(04)
「11月07日の記事」でも示した通り、
1 (1)象は鼻が長い。 A
1 (〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
1 (〃)すべてのxについて、xが象であるならば、有るyはxの鼻であって長く、すべてのzについて、zがxの鼻でないならば、zは長くない。 A
2 (2)兎の耳は長く、兎の耳は鼻ではない。 A
2 (〃)∀x{兎x→∃y(耳yx&長y)&∀z(耳zx→~鼻zx)} A
2 (〃)すべてのxについて、xが兎であるならば、有るyはxの耳であって長く、すべてのzについて、zがxの耳ならば、zはxの鼻ではない。 A
3 (3)有る兎は象である。 A
3 (〃)∃x(兎x&象x) A
3 (〃)あるxは兎であって象である。 A
1 (4) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
2 (5) 兎a→∃y(耳ya&長y)&∀z(耳za→~鼻za) 1UE
6 (6) 兎a&象a A
6 (7) 兎a 6&E
6 (8) 象a 6&E
1 6 (9) ∃y(鼻ya&長y)&∀z(~鼻za→~長z) 47MPP
2 6 (ア) ∃y(耳ya&長y)&∀z(耳za→~鼻za) 58MPP
1 6 (イ) ∃y(鼻ya&長y) 9&E
2 6 (ウ) ∃y(耳ya&長y) ア&E
エ (エ) 鼻ba&長b A
オ(オ) 耳ba&長b A
1 6 (カ) ∀z(~鼻za→~長z) 9&E
1 6 (キ) ~鼻ba→~長b カUE
2 6 (ク) ∀z(耳za→~鼻za) ア&E
2 6 (ケ) 耳ba→~鼻ba クUE
オ (コ) 耳ba オ&E
2 6オ (サ) ~鼻ba ケコMPP
12 6オ (シ) ~長b キサコMPP
オ (ス) 長b オ&E
12 6オ (セ) 長b&~長b シス&I
12 6 (ソ) 長b&~長b ウオセEE
123 (タ) 長b&~長b 36ソEE
12 (チ)~∃x(兎x&象x) 3タRAA
12 (ツ)∀x~(兎x&象x) チ量化子の関係
12 (テ) ~(兎a&象a) ツUE
12 (ト) ~兎a∨~象a テ、ド・モルガンの法則
12 (ナ) 兎a→~象a ト含意の定義
12 (ニ)∀x(兎x→~象x) ナUI
12 (〃)すべてのxについて、xが兎であるならば、xは象ではない。 ナUI
12 (〃)兎は象ではない。 ナUI
然るに、
(05)
(04)を「書き換へ」ると、
1 (1)象は鼻が長い。 A
1 (〃)∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)} A
1 (〃)すべてxについて、xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzがxの鼻でなく、尚且つ、長い。といふことはない。
2 (2)兎の耳は長く、兎の耳は鼻ではない。 A
2 (〃)∀x{兎x→∃y(耳yx&長y)&∀z(耳zx→~鼻zx)} A
2 (〃)すべてのxについて、xが兎であるならば、有るyはxの耳であって長く、すべてのzについて、zがxの耳ならば、zはxの鼻ではない。 A
3 (3)有る兎は象である。 A
3 (〃)∃x(兎x&象x) A
3 (〃)あるxは兎であって象である。 A
1 (4) 象a→∃y(鼻ya&長y)&~∃z(~鼻za&長z) 1UE
2 (5) 兎a→∃y(耳ya&長y)&∀z(耳za→~鼻za) 1UE
6 (6) 兎a&象a A
6 (7) 兎a 6&E
6 (8) 象a 6&E
1 6 (9) ∃y(鼻ya&長y)&~∃z(~鼻za&長z) 47MPP
2 6 (ア) ∃y(耳ya&長y)&∀z(耳za→~鼻za) 58MPP
1 6 (イ) ∃y(鼻ya&長y) 9&E
2 6 (ウ) ∃y(耳ya&長y) ア&E
エ (エ) 鼻ba&長b A
オ (オ) 耳ba&長b A
1 6 (カ) ~∃z(~鼻za&長z) 9&E
キ(キ) ~鼻ba&長b A
キ(ク) ∃z(~鼻za&長z) キEI
1 6 キ(ケ) ~∃z(~鼻za&長z)&
∃z(~鼻za&長z) カキ&I
1 6 (コ) ~(~鼻ba&長b) キケRAA
1 6 (サ) ~~鼻ba∨~長b コ、ド・モルガンの法則
1 6 (シ) ~鼻ba→~長b サ含意の定義
2 6 (ス) ∀z(耳za→~鼻za) ア&E
2 6 (セ) 耳ba→~鼻ba スUE
オ (ソ) 耳ba オ&E
2 6 オ (タ) ~鼻ba セソMPP
12 6 オ (チ) ~長b シタMPP
オ (ツ) 長b オ&E
12 6 オ (テ) 長b&~長b チツ&I
12 6 (ト) 長b&~長b ウオテEE
123 (ナ) 長b&~長b 36トEE
12 (ニ)~∃x(兎x&象x) 3タRAA
12 (ヌ)∀x~(兎x&象x) ニ量化子の関係
12 (ネ) ~(兎a&象a) ヌUE
12 (ノ) ~兎a∨~象a ノ、ド・モルガンの法則
12 (ハ) 兎a→~象a ネ含意の定義
12 (ヒ)∀x(兎x→~象x) ハUI
12 (〃)すべてのxについて、xが兎であるならば、xは象ではない。 ハUI
12 (〃)兎は象ではない。 ハUI
といふ風に、『結論』は、変はらない。
従って、
(04)(05)により、
(06)
(ⅲ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(ⅳ)∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。
に於いて、
(ⅲ)=(ⅳ) であるはずである。
従って、
(06)により、
(07)
(ⅲ) ∀z(~鼻zx→~長z)
(ⅳ) ~∃z(~鼻zx&長z)
に於いて、
(ⅲ)=(ⅳ) でなければ、ならない。
然るに、
(08)
(ⅲ)
1 (1) ∀z(~鼻zx→ ~長z) A
1 (2) ~鼻bx→ ~長b 1UI
1 (3) ~~鼻bx∨ ~長b 2含意の定義
1 (4) 鼻bx∨ ~長b 3DN
1 (5) ~~(鼻bx∨ ~長b) 4DN
1 (6) ~(~鼻bx&~~長b) 5ド・モルガンの法則
1 (7) ~(~鼻bx& 長b) 6DN
8 (8) ∃z(~鼻zx& 長z) A
9(9) ~鼻bx& 長b A
1 9(ア) ~(~鼻bx& 長b)&
~鼻bx& 長b) 79&I
18 (イ) ~(~鼻bx& 長b)&
(~鼻bx& 長b) 89アEE
1 (ウ)~∃z(~鼻zx& 長z) 8イRAA
(ⅳ)
1 (1)~∃z(~鼻zx& 長z) A
2 (2) ~鼻bx& 長b A
2 (3) ∃z(~鼻zx& 長z) 2EI
12 (4)~∃z(~鼻zx& 長z)&
∃z(~鼻zx& 長z) 13&I
1 (5) ~(~鼻bx& 長b) 24RAA
1 (6) ~~鼻bx∨ ~長b 5ド・モルガンの法則
1 (7) ~鼻zx→ ~長z 6含意の定義
1 (8) ∀z(~鼻zx→ ~長z) 7UI
従って、
(08)により、
(09)
確かに、
(ⅲ) ∀z(~鼻zx→~長z)
(ⅳ) ~∃z(~鼻zx&長z)
に於いて、
(ⅲ)=(ⅳ) である。
従って、
(06)(09)により、
(10)
確かに、
(ⅲ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(ⅳ)∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。
に於いて、
(ⅲ)=(ⅳ) である。
然るに、
(11)
等しいモノ同士の、それぞれの否定は、互いに、等しい。
従って、
(09)(11)により、
(12)
(ⅴ) ~∀z(~鼻zx→~長z)
(ⅳ) ~~∃z(~鼻zx&長z)
に於いて
(ⅴ)=(ⅵ) である。
然るに、
(13)
「二重否定(DN)」により、
(ⅴ) ~∀z(~鼻zx→~長z)
(ⅳ) ∃z(~鼻zx&長z)
に於いて
(ⅴ)=(ⅵ) である。
従って、
(10)(13)により、
(14)
(ⅴ)∀x{象x→∃y(鼻yx&長y)&~∀z(~鼻zx→~長z)}。
(ⅵ)∀x{象x→∃y(鼻yx&長y)& ∃z(~鼻zx&長z)}。
に於いて、
(ⅴ)=(ⅵ) である。
従って、
(01)~(14)により
(15)
(ⅰ)∀x{ 象x→ ∃y(鼻yx&長y)}。
(ⅱ)∀x{~∃y(鼻yx&長y)→~象x}。
(ⅲ)∀x{象x→∃y(鼻yx&長y)& ∀z(~鼻zx→~長z)}。
(ⅳ)∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx& 長z)}。
(ⅴ)∀x{象x→∃y(鼻yx&長y)&~∀z(~鼻zx→~長z)}。
(ⅵ)∀x{象x→∃y(鼻yx&長y)& ∃z(~鼻zx& 長z)}。
に於いて、すなはち、
(ⅰ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長い}。
(ⅱ)すべてxについて{あるyがxの鼻であって、そのyが長くないならば、xは象ではない}。
(ⅲ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、すべてのzについてzがxの鼻でないならばzは長くない}。
(ⅳ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzがxの鼻ではなく、尚且つ、zが長い。といふことはない}。
(ⅴ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、すべてのzについてzがxの鼻でないならばzは長くない、といふわけではない}。
(ⅵ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzはxの鼻ではなく、尚且つ、zは長い}。
に於いて、
(ⅰ)=(ⅱ) であって、
(ⅲ)=(ⅳ) であって、
(ⅴ)=(ⅵ) である。
然るに、
(14)により、
(16)
(ⅰ)∀x{ 象x→ ∃y(鼻yx&長y)}。
(ⅱ)∀x{~∃y(鼻yx&長y)→~象x}。
に関しては、すなはち、
(ⅰ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長い}。
(ⅱ)すべてxについて{あるyがxの鼻であって、そのyが長くないならば、xは象ではない}。
に関しては、
(ⅰ)「象の鼻」以外については、「何も述べてゐない」。
然るに、
(17)
(ⅰ)象は鼻は長い。
(ⅲ)象は鼻が長い。
(ⅴ)象は鼻も長い。
に於いて、
(ⅰ)だけが、明らかに、「象の鼻」以外については、「何も述べてゐない」。
従って、
(16)(17)により、
(18)
(ⅰ)象は鼻は長い。
といふ「日本語」は、
(ⅰ)∀x{ 象x→ ∃y(鼻yx&長y)}。
(ⅱ)∀x{~∃y(鼻yx&長y)→~象x}。
といふ「述語論理」に、対応する。
然るに、
(19)
マンモス (Mammoth) は哺乳綱長鼻目ゾウ科マンモス属 (Mammuthus) に属する種の総称である。現在は全種が絶滅している。現生のゾウの類縁だが、直接の祖先ではない。約400万年前から1万年前頃(絶滅時期は諸説ある)までの期間に生息していた。巨大な牙が特徴で、種類によっては牙の長さが5.2メートルに達することもある(ウィキペディア)。
従って、
(19)により、
(20)
(ⅴ)マンモス象は鼻だけでなく牙も長い。
(ⅴ)マンモス象は牙だけでなく鼻も長い。
従って、
(20)により、
(21)
(ⅴ)(マンモス)象は鼻も長い。
(ⅴ)(マンモス)象は牙も長い。
然るに、
(22)
(ⅴ)∀x{象x→∃y(鼻yx&長y)&~∀z(~鼻zx→~長z)}。
(ⅵ)∀x{象x→∃y(鼻yx&長y)& ∃z(~鼻zx& 長z)}。
であるならば、すなはち、
(ⅴ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、すべてのzについてzがxの鼻でないならばzは長くない、といふわけではない}。
(ⅵ)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzはxの鼻ではなく、尚且つ、zは長い}。
であるならば、
(ⅴ)象は鼻も長い。
といふことなる。
従って、
(22)により、
(23)
(ⅴ)象は鼻も長い。
といふ「日本語」は、
(ⅴ)∀x{象x→∃y(鼻yx&長y)&~∀z(~鼻zx→~長z)}。
(ⅵ)∀x{象x→∃y(鼻yx&長y)& ∃z(~鼻zx& 長z)}。
といふ「述語論理」に、対応する。
(24)
(ⅲ)象は鼻が長。⇔
(ⅲ)象は鼻が長い=∀x{象x→∃y(鼻yx&長y)& ∀z(~鼻zx→~長z)}。
であるといふ風に、「仮定」する。
然るに、
(25)
(ⅲ)象は鼻が長い。
に於いて、
(ⅲ)象 =タゴール記念会
(ⅲ)鼻 =私
(ⅲ)長い=理事長
といふ「代入」を行ふと、
(ⅲ)タゴール記念会は私が理事長です。
といふ「日本語」になる。
従って、
(24)(25)により、
(26)
(ⅲ)タゴール記念会は私が理事長です。⇔
(ⅲ)タゴール記念会は私が理事長です=∀x{タゴール記念会x→∃y(私yx&理事長y)&∀z(~私zx→~理事長z)}。
であるといふ風に、「仮定」する。
然るに、
(27)
(ⅲ)
1 (1)∀x{タゴール記念会x→∃y(私yx&理事長y)&∀z(~私zx→~理事長z)} A
1 (2) タゴール記念会a→∃y(私ya&理事長y)&∀z(~私za→~理事長z) 1UE
2 (3) タゴール記念会a A
12 (4) ∃y(私ya&理事長y)&∀z(~私za→~理事長z) 23MPP
12 (5) ∃y(私ya&理事長y) 4&E
12 (6) ∀z(~私za→~理事長z 4&E
12 (7) ~私ca→~理事長c 6UI
8 (8) ~私ca A
9(9) 理事長c A
128 (ア) ~理事長c 78MPP
1289(イ) 理事長c&~理事長c 9ア&I
12 9(ウ) ~~私ca 8イRAA
12 9(エ) 私ca ウDN
12 (オ) 理事長c→ 私ca 9エCP
12 (カ) ∀z( 理事長z→ 私za) オUI
12 (キ) ∃y(私ya&理事長y)&∀z( 理事長z→ 私za) 5カ&I
1 (ク) タゴール記念会a→∃y(私ya&理事長y)&∀z( 理事長z→ 私za) 3キCP
1 (ケ)∀x{タゴール記念会x→∃y(私yx&理事長y)&∀z( 理事長z→ 私zx)} ケUI
1 (〃)すべてのxついて{xがタゴール記念会員であるならば、あるyはxの、すなはちタゴール記念会員の私であって、そのyは理事長であって、すべてのzについてzが理事長であるならば、zはxの、すなはちタゴール記念会員の私である}。
(ⅳ)
1 (1)∀x{タゴール記念会x→∃y(私yx&理事長y)&∀z( 理事長z→ 私zx)} A
1 (2) タゴール記念会a→∃y(私ya&理事長y)&∀z( 理事長z→ 私za) 1UE
2 (3) タゴール記念会a A
12 (4) ∃y(私ya&理事長y)&∀z( 理事長z→ 私za) 23MPP
12 (5) ∃y(私ya&理事長y) 4&E
12 (6) ∀z( 理事長z→ 私za) 4&E
12 (7) 理事長c→ 私ca 6UI
8 (8) 理事長c A
9(9) ~私ca A
128 (ア) 私ca 78MPP
1289(イ) ~私ca&私ca 9ア&I
12 9(ウ) ~理事長c 8イRAA
12 (エ) ~私ca→~理事長c 9ウCP
12 (オ) ∀z(~私za→~理事長z) エUI
12 (カ) ∃y(私ya&理事長y)&∀z(~私za→~理事長z) 5オ&I
1 (キ) タゴール記念会a→∃y(私ya&理事長y)&∀z(~私za→~理事長z) 3カCP
1 (ク)∀x{タゴール記念会x→∃y(私yx&理事長y)&∀z(~私zx→~理事長z)}。 キUI
1 (〃)すべてのxついて{xがタゴール記念会員であるならば、あるyはxの、すなはちタゴール記念会員の私であって、そのyは理事長であって、すべてのzについてzがxの、すなはちタゴール記念会員の私であるならば、zは理事長である}。
従って、
(26)(27)により、
(28)
(ⅲ)タゴール記念会は私が理事長です。⇔
(ⅲ)タゴール記念会は私が理事長です=∀x{タゴール記念会x→∃y(私yx&理事長y)&∀z(~私zx→~理事長z)}。
であるといふ風に、「仮定」すると、
(ⅳ)タゴール記念会は理事長は私です。⇔
(ⅳ)タゴール記念会は理事長は私です=∀x{タゴール記念会x→∃y(私yx&理事長y)&∀z( 理事長z→ 私zx)}。
に於いて、
(ⅲ)=(ⅳ) である。
然るに、
(29)
よく知られているように、「私が理事長です」は語順を変え、
理事長は、私です。
と直して初めて主辞賓辞が適用されのである。また、かりに大倉氏が、
タゴール記念館は、私が理事です。
と言ったとすれば、これは主辞「タゴール記念館」を品評するという心持ちの文である。
(三上章、日本語の論理、1963年、40・41頁)
従って、
(29)により、
(30)
これは主辞「タゴール記念館」を品評するという心持ちの文である。
か、どうかは別にして、いづれにせよ、
(ⅲ)私は理事長です。
(ⅳ)理事長は私です。
ではなく、
(ⅲ)私が理事長です。
(ⅳ)理事長は私です。
に於いて、
(ⅲ)=(ⅳ) である。
といふことが、「よく知られていて」、
(ⅳ)理事長は私です。
といふことは、
(ⅲ)私以外は理事長ではない。
といふことに、他ならない。
然るに、
(31)
(ⅲ)私以外は理事長ではない。
といふことは、
(ⅲ)∀z(~私zx→~理事長z)}。
(ⅲ)すべてのzについて、zが私でないならば、zは理事長ではない。
といふことに、他ならない。
従って、
(28)(30)(31)により、
(32)
(ⅲ)私は理事長です。
(ⅳ)理事長は私です。
ではなく、
(ⅲ)私が理事長です。
(ⅳ)理事長は私です。
といふ「対偶(Contraposition)」は、
(ⅲ)∀z(~私zx→~理事長z)}。
(ⅳ)∀z( 理事長z→ 私zx)}。
といふ「述語論理」に、対応し、
(ⅲ)=(ⅳ) である。
従って、
(28)(32)により、
(33)
(ⅲ)タゴール記念会は私が理事長です。
といふ「日本語」は、
(ⅲ)∀x{タゴール記念会x→∃y(私yx&理事長y)&∀z(~私zx→~理事長z)}。
(ⅳ)∀x{タゴール記念会x→∃y(私yx&理事長y)&∀z( 理事長z→ 私zx)}。
といふ「述語論理」に、対応する。
従って、
(01)(10)(25)(33)により、
(34)
(ⅲ)象は鼻が長い。
といふ「日本語」は、
(ⅲ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(ⅳ)∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。
に加へて、
(ⅶ)∀x{象x→∃y(鼻yx&長y)&∀z( 長z→ 鼻zx)}。
といふ「述語論理」に、対応する。
従って、
(18)(23)(34)により、
(35)
(β)象は鼻は長い。
(γ)象は鼻が長い。
(δ)象は鼻も長い。
といふ「日本語」は、
(β)∀x{象x→∃y(鼻yx&長y)}。
(γ)∀x{象x→∃y(鼻yx&長y)& ∀z(~鼻zx→~長z)}。
(δ)∀x{象x→∃y(鼻yx&長y)&~∀z(~鼻zx→~長z)}。
といふ「述語論理」に、対応する。
然るに、
(36)
(α)象は動物である。
といふ「日本語」は、
(α)∀x{象x→動物x}。
といふ「述語論理」に、対応する。
従って、
(35)(36)により、
(37)
(α)象は動物である。
(β)象は鼻は長い。
(γ)象は鼻が長い。
(δ)象は鼻も長い。
といふ「日本語」は、
(α)∀x{象x→動物x}。
(β)∀x{象x→∃y(鼻yx&長y)}。
(γ)∀x{象x→∃y(鼻yx&長y)& ∀z(~鼻zx→~長z)}。
(δ)∀x{象x→∃y(鼻yx&長y)&~∀z(~鼻zx→~長z)}。
といふ「述語論理」に、対応する。
然るに、
(38)
(α)∀x{象x→P}。
に於いて、
(α)P=動物x
であるならば、
(α)∀x{象x→動物x}。
である。
(39)
(γ)∀x{象x→P}。
に於いて、
(γ)P=∃y(鼻yx&長y)& ∀z(~鼻zx→~長z)
であるならば、
(γ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
である。
従って、
(37)(38)(39)により、
(40)
(α)象は動物である。
(β)象は鼻は長い。
(γ)象は鼻が長い。
(δ)象は鼻も長い。
といふ「日本語」は、「述語論理」といふ「観点」からすると、四つとも、
(α)∀x{象x→P}。
(β)∀x{象x→P}。
(γ)∀x{象x→P}。
(δ)∀x{象x→P}。
といふ「形」をしてゐる。
cf.
∀x{Fx→P}における普遍量記号は{Fx→P}の全表現に作用を及ぼす。
(論理学初歩、E.J.レモン、竹尾治一郎・浅野楢英 訳、1973年、161頁改)
従って、
(41)
(ε)∀x{象x→P}。
といふ「日本語」の、Pの中に、「所謂、主語が、n個ある」ならば、
(ε)∀x{象x→P}。
といふ「日本語」の中には、「(1+n)個の主語」があることになる。
然るに、
(43)
(9)この手紙は誰が書いたの?
(10)さっきここにあったリンゴは太郎が食べた。
(11)カキ料理は広島が本場だ。
(12)象は鼻が長い。
には主語が2つあることになりますが、こうしたごく普通の文において一意的に定められないとすると、「主語」という概念はどれだけ有効なのかという疑問が生まれてきます(庵功雄、新しい日本語学入門、2001年、85頁改)との、ことである。
平成30年11月15日、毛利太。
0 件のコメント:
コメントを投稿