2023年8月9日水曜日

「象は鼻が長い(鼻は象が長い)」の「述語論理」。

(01)
1       (1) ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
 2      (2) ∀x{兎x→∃z(耳zx&~鼻zx&長z)}         A
  3     (3) ∃x(象x&兎x)                      A
1       (4)    象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z)  1UE
 2      (5)    兎a→∃z(耳za&~鼻za&長z)          2UE
   6    (6)    象a&兎a                       A
   6    (7)    象a                          6&E
   6    (8)       兎a                       6&E
1  6    (9)                  ∀z(~鼻za→~長z)  47MPP
1  6    (ア)                     ~鼻ba→~長b   9UI
 2 6    (イ)       ∃z(耳za&~鼻za&長z)          58MPP
    ウ   (ウ)          耳ba&~鼻ba&長b           A
    ウ   (エ)              ~鼻ba              ウ&E
    ウ   (オ)                   長b           ウ&E
1  6ウ   (カ)                          ~長b   アエMPP
1  6ウ   (キ)                   長b&~長b       オカ&I
12 6    (ク)                   長b&~長b       イウキEE
123     (ケ)                   長b&~長b       36クEE
12      (コ)~∃x(象x&兎x)                      3ケRAA
12      (サ)∀x~(象x&兎x)                      コ量化子の関係
12      (シ)  ~(象a&兎a)                      サUE
     ス  (ス)    象a                          A
      セ (セ)       兎a                       A
     スセ (ソ)    象a&兎a                       スセ&I
12   スセ (タ)  ~(象a&兎a)&(象a&兎a)              シソ&I
12   ス  (チ)      ~兎a                       セタRAA
12      (ツ)   象a→~兎a                       スチCP
       テ(テ)       兎a                       A
       テ(ト)     ~~兎a                       テDN
12     テ(ナ)  ~象a                           ツトMTT
12      (ニ)   兎a→~象a                       テナCP
12      (ヌ)∀x(兎x→~象x)                      ニUI
従って、
(01)により、
(02)
(ⅰ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。然るに、
(ⅱ)∀x{兎x→∃z(耳zx&~鼻zx&長z)}。従って、
(ⅲ)∀x(兎x→~象x)。
といふ『推論』、すなはち、
(ⅰ)すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)、すべてのzについて(zがxの鼻ではないならば、zは長くない)}。然るに、
(ⅱ)すべてのxについて{xが兎であるならば、あるzは(xの耳であって、xの鼻ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない)。
といふ『推論』、すなはち、
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎の耳は鼻ではないが、長い。従って、
(ⅲ)兎は象ではない。
といふ『推論』は「妥当」である。
従って、
(02)により、
(03)
① 象は鼻が長い。
② ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
③ すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)、すべてのzについて(zがxの鼻ではないならば、zは長くない)}。
に於いて、
①=②=③ である。
然るに、
(03)により、
(04)
① 象は鼻が長い。
② ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
③ すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)、すべてのzについて(zがxの鼻ではないならば、zは長くない)}。
に於いて、「象」と「鼻」を「交換」すると、
④ 鼻は象が長い。
⑤ ∀x{鼻x→∃y(象yx&長y)&∀z(~象zx→~長z)}。
⑥ すべてのxについて{xが鼻であるならば、あるyは(xの象であって、長く)、すべてのzについて(zがxの象ではないならば、zは長くない)}。
然るに、
(04)により、
(05)
③{(xの鼻)&(x=象)}⇔{(xの鼻)=(象の鼻)}
⑥{(xの象)&(x=鼻)}⇔{(xの象)=(鼻の象)}
然るに、
(05)により、
(06)
③(象の鼻)といふ「日本語」に対して、
⑥(鼻の象)といふ「日本語」は、「意味不明」である。
従って、
(04)(05)(06)により、
(07)
① 象は鼻が長い。
② ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
④ 鼻は象が長い。
⑤ ∀x{鼻x→∃y(象yx&長y)&∀z(~象zx→~長z)}。
に於いて、
①=② であるが、
④=⑤ ではない
然るに、
(08)
1    (1)∀x∃y{(鼻xy&象y)→長x&(~象y&鼻xy)→~長x} A
1    (2)  ∃y{(鼻ay&象y)→長a&(~象y&鼻ay)→~長a} 1UE
 3   (3)     (鼻ab&象b)→長a&(~象b&鼻ab)→~長a  A
 3   (4)                 (~象b&鼻ab)→~長a  3&E
  5  (5)  ∀y{(兎y→~象y)&∃x(鼻xy)}          A
  5  (6)     (兎b→~象b)&∃x(鼻xb)           UE
  5  (7)      兎b→~象b                    6&E
   8 (8)      兎b                        A
  58 (9)         ~象b                    78MPP
  5  (ア)              ∃x(鼻xb)           6&E
    イ(イ)                 鼻ab            A
  58イ(ウ)                  ~象b&鼻ab       9イ&I
 358イ(エ)                           ~長a  4ウMPP
 358イ(オ)                  鼻ab&~長a       イエ&I
 358イ(カ)               ∃x(鼻xb&~長x)      オEI
 358 (キ)               ∃x(鼻xb&~長x)      アイカEE
 35  (ク)            兎b→∃x(鼻xb&~長x)      8キCP
 35  (ケ)         ∀y{兎y→∃x(鼻xy&~長x)}     クUI
1 5  (コ)         ∀y{兎y→∃x(鼻xy&~長x)}     23ケEE
  従って、
(08)により、
(09)
(ⅰ)∀x∃y{(鼻xy&象y)→長x&(~象y&鼻xy)→~長x}。然るに、
(ⅱ)  ∀y{(兎y→~象y)&∃x(鼻xy)}。従って、
(ⅲ)  ∀y{ 兎y→∃x(鼻xy&~長x)}。
といふ『推論』、すなはち、
(ⅰ)すべてのxとあるyについて{(xがyの鼻であって、yが象である)ならば、xは長く、(yが象でなくて、xがyの鼻である)ならば、xは長くない}。然るに、
(ⅱ)    すべてのyについて{(yが兎であるならば、yは象ではなく)、あるxは(yの鼻である)}。従って、
(ⅲ)    すべてのyについて{ yが兎であるならば、あるxは(yの鼻であって、長くない)}。
といふ『推論』、すなはち、
(ⅰ)鼻は象が長く、象以外の鼻は長くない。然るに、
(ⅱ)兎は象ではないが、兎には鼻がある。 従って、
(ⅲ)兎の鼻は長くない。
といふ『推論』は「妥当」である。
然るに、
(10)
{(象の鼻、兎の鼻、馬の鼻)、(象の耳、兎の耳、馬の耳)、(象の顔、兎の顔、馬の顔)}
であるならば、
(ⅰ)鼻は象長い(象以外の鼻は長くない)。
(ⅱ)耳は兎長い(兎以外の耳は長くない)。
(ⅲ)顔は馬長い(馬以外の顔は長くない)。
従って、
(01)~(10)により、
(11)
① 象は鼻長い。
② 鼻は象長い。
③ ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
④ ∀x∃y{(鼻xy&象y)→長x&(~象y&鼻xy)→~長x}。
に於いて、
①=③ であって、
②=④ である。
令和5年8月9日、毛利太。

0 件のコメント:

コメントを投稿