(01)
(ⅰ)
1(1)P&~Q A
1(2) ~Q 1UE
1(3)P 1UE
1(4)~Q&P 23&I
(ⅱ)
1(1)~Q&P A
1(2)~Q 1UE
1(3) P 1UE
1(4)P&~Q 23&I
従って、
(01)により、
(02)
① P&~Q≡PであってQでない。
② ~Q&P≡QでなくてPである。
に於いて、
①=② は、「交換の法則」である。
従って、
(02)により、
(03)
① ~(P&~Q)≡(PであってQでない)といふことはない。
② ~(~Q&P)≡(QでなくてPである)といふことはない。
に於いて、
①=② は、「交換の法則」である。
然るに、
(04)
(ⅰ)
1 (1)~(P&~Q) A
2 (2) P A
3(3) ~Q A
23(4) P&~Q 23&I
123(5)~(P&~Q)&
(P&~Q) 14&I
12 (6) ~~Q 35RAA
12 (7) Q 6DN
1 (8) P→ Q 27CP
(ⅲ)
1 (1) P→ Q A
2 (2) P&~Q A
2 (3) P 2&I
12 (4) Q 13MPP
2 (5) ~Q 2&I
12 (6) Q&~Q 45&I
1 (7)~(P&~Q) 26RAA
従って、
(04)により、
(05)
① ~(P&~Q)≡(PであってQでない)といふことはない。
③ P→ Q ≡ Pであるならば、Qである。
に於いて、
①=③ である。
従って、
(03)(04)(05)により、
(06)
① ~(P&~Q)≡(PであってQでない)といふことはない。
② ~(~Q&P)≡(QでなくてPである)といふことはない。
③ P→ Q ≡ Pであるならば、Qである。
に於いて、
①=②=③ である。
然るに、
(07)
(ⅲ)
1 (1) P→ Q A
2 (2) ~Q A
3(3) P A
1 3(4) Q 13MPP
123(5) ~Q&Q 24&I
12 (6) ~P 35RAA
1 (7)~Q→~P 26CP
(ⅳ)
1 (1)~Q→~P A
2 (2) P A
3(3)~Q A
1 3(4) ~P 13MPP
123(5) P&~P 24&I
12 (6) ~~Q 35RAA
12 (7) Q 6DN
1 (8) P→ Q 27CP
従って、
(07)により、
(08)
③ P→ Q≡Pであるならば、Qである。
④ ~Q→~P≡Qでないならば、Pでない。
に於いて、
③=④ は、「対偶」である。
従って、
(06)(07)(08)により、
(09)
① ~(P&~Q)≡(PであってQでない)といふことはない。
② ~(~Q&P)≡(QでなくてPである)といふことはない。
③ P→ Q ≡ Pであるならば、Qである。
④ ~Q→~P ≡ Qでないならば、Pでない。
に於いて、
①=②=③=④ である。
従って、
(02)(08)(09)により、
(10)
① ~(P&~Q)≡(PであってQでない)といふことはない。
② ~(~Q&P)≡(QでなくてPである)といふことはない。
③ P→ Q ≡ Pであるならば、Qである。
④ ~Q→~P ≡ Qでないならば、Pでない。
に於いて、
①=②=③=④ であって、尚且つ、
①=② は、「交換の法則」であって、
③=④ は、「対偶」である。
従って、
(10)により、
(11)
「交換の法則」が「当然」である以上、「対偶」も「当然」である。
といふ、ことになる。
令和03年07月08日、毛利太。
0 件のコメント:
コメントを投稿