(01)
(ⅰ)
1 (1) P→ Q A
2 (2) P&~Q A
2 (3) P 2&E
12 (4) Q 13MPP
2 (5) ~Q 2&E
12 (6) Q&~Q 45&I
1 (7)~(P&~Q) 26RAA
(ⅱ)
1 (1)~(P&~Q) A
2 (2) P A
3(3) ~Q A
23(4) P&~Q 23&I
123(5)~(P&~Q)&
(P&~Q) 14&I
12 (6) ~~Q 35RAA
12 (7) Q 6DN
1 (8) P→ Q 27CP
(02)
(ⅱ)
1 (1) ~(P&~Q) A
2 (2) ~(~P∨Q) A
3 (3) ~P A
3 (4) ~P∨Q 3∨I
23 (5) ~(~P∨Q)&
(~P∨Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
8(8) Q A
8(9) ~P∨Q 8∨I
2 8(ア) ~(~P∨Q)&
(~P∨Q) 29&I
2 (イ) ~Q 8アRAA
2 (ウ) P&~Q 7イ&I
12 (エ) ~(P&~Q)&
(P&~Q) 1ウ&I
1 (オ)~~(~P∨Q) 2エRAA
1 (カ) ~P∨Q オDN
(ⅲ)
1 (1) ~P∨Q A
2 (2) P&~Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6)~(P&~Q) 25RAA
7(7) Q A
2 (8) ~Q 2&E
2 7(9) Q&~Q 78&I
7(ア)~(P&~Q) 29RAA
1 (イ)~(P&~Q) 1367ア∨E
従って、
(01)(02)により、
(03)
① P→ Q
② ~(P&~Q)
③ ~P∨ Q
に於いて、
①=② であって、
②=③ であって、それ故、
①=②=③ である。
従って、
(03)により、
(04)
Q=P であるとして、
① P→ P
② ~(P&~P)
③ ~P∨ P
に於いて、
①=② であって、
②=③ であって、それ故、
①=②=③ である。
従って、
(04)により、
(05)
① P→ P
② ~(P&~P)
③ ~P∨ P
に於いて、すなわち、
①「同一律(トートロジー)」
②「矛盾律(トートロジー)」
③「排中律(トートロジー)」
に於いて、
①=② であって、
②=③ であって、それ故、
①=②=③ である。
然るに、
(06)
(ⅰ)
1(1)P A
(2)P→P 11CP
(ⅱ)
1(1) P&~P A
(2)~(P&~P) 11RAA
(ⅲ)
1 (1) ~(~P∨P) A
2(2) ~P A
2(3) ~P∨P 2∨I
12(4) ~(~P∨P)&
(~P∨P) 13&I
1 (5) ~~P 24RAA
1 (6) P 5DN
1 (7) ~P∨P 6∨I
1 (8) ~(~P∨P)&
(~P∨P) 61&I
(9)~~(~P∨P) 18RAA
(ア) ~P∨P 9DN
従って、
(06)により、
(07)
①├ P→ P
②├ ~(P&~P)
③├ ~P∨ P
という「連式」に対する、
① P→ P
② ~(P&~P)
③ ~P∨ P
という「論理式」に於いて、
① は、「仮定の数がゼロである所の、連式の結論」であって、
② も、「仮定の数がゼロである所の、連式の結論」であって、
③ も、「仮定の数がゼロである所の、連式の結論」である。
然るに、
(05)により、
(08)
① P→ P
② ~(P&~P)
③ ~P∨ P
に於いて、
①=②=③ であるため、それらの「否定」である所の、
① ~{ P→ P}
② ~{~(P&~P)}
③ ~{ ~P∨ P}
に於いても、
①=②=③ である。
然るに、
(09)
(ⅱ)
1(1) ~{~(P&~P)} A
1(2) P&~P 1DN
(3)~~{~(P&~P)} 12RAA(背理法)
(4) ~(P&~P) 3DN
従って、
(07)(08)(09)により、
(10)
① P→ P
② ~(P&~P)
③ ~P∨ P
に於いて、
①=②=③ である所の「恒真式(トートロジー)」は、
(a)「否定」をすると、
(b)「矛盾」が生じるが故に、
(c)「背理法(RAA)」により、
(d)「仮定の数がゼロである所の、連式の結論」である。
然るに、
(11)
(ⅰ)
1 (1)P→Q A
2(2)P A
12(3) Q 12MPP
(ⅱ)
1 (1)P→Q A
2(2)P A
12(3) Q 12MPP
1 (4)P→Q 23CP
(ⅲ)
1 (1) P→Q A
2(2) P A
12(3) Q 12MPP
1 (4) P→Q 23CP
(5)(P→Q)→(P→Q) 14CP
(ⅳ)
1 (1) P→Q A
2(2) P A
12(3) Q 12MPP
2(4)(P→Q)→Q 13CP
(5) P→((P→Q)→Q) 14CP
従って、
(11)により、
(12)
① P→Q,P├ Q
② P→Q├ P→Q
③ ├(P→Q)→(P→Q)
④ ├ P→((P→Q)→Q)
という「連式(sequents)」は「妥当」である。
従って、
(12)により、
(13)
① P→Q,P├ Q
② P→Q├ P→Q
③ ├(P→Q)→(P→Q)
④ ├ P→((P→Q)→Q)
という「連式」に対する、
① Q
② P→Q
③(P→Q)→(P→Q)
④ P→((P→Q)→Q)
という「論理式」に於いて、
① は、「仮定の数が1である所の、連式の結論」であって、
② は、「仮定の数が2である所の、連式の結論」であって、
③ は、「仮定の数が0である所の、連式の結論」であって、
④ は、「仮定の数が0である所の、連式の結論」である。
然るに、
(14)
(ⅲ)
1(1) ~{ (P→Q)→( P→Q)} A
1(2) ~{~(P→Q)∨( P→Q)} 1含意の定義
1(3) ~{~(P→Q)∨(~P∨Q)} 2含意の定義
1(4) P→Q&~(~P∨Q) 3ド・モルガンの法則
1(5) P→Q 4&E
1(6) ~(~P∨Q) 4&E
1(7) P&~Q 6ド・モルガンの法則
1(8) P 7&E
1(9) Q 58MPP
1(ア) ~Q 7&E
1(イ) Q&~Q 9ア&I
(ウ)~~{ (P→Q)→( P→Q)} 1イRAA
(エ) (P→Q)→( P→Q) ウDN
(ⅳ)
1(1) ~{ P→( (P→Q)→ Q)} A
1(2) ~{~P∨( (P→Q)→ Q)} 1含意の定義
1(3) ~{~P∨(~(P→Q)∨ Q)} 2含意の定義
1(4) P&~(~(P→Q)∨ Q) 3ド・モルガンの法則
1(5) P 4&E
1(6) ~(~(P→Q)∨ Q) 5&E
1(7) (P→Q)&~Q 6ド・モルガンの法則
1(8) P→Q 7&E
1(9) Q 58MPP
1(ア) ~Q 7&E
1(イ) Q&~Q 9ア&I
(ウ)~~{ P→( (P→Q)→ Q)} 1イRAA
(エ) P→( (P→Q)→ Q) ウDN
従って、
(13)(14)により、
(15)
③(P→Q)→(P→Q)
④ P→((P→Q)→Q)
に於いて、
③ は、「仮定の数が0である所の、連式の結論」であって、
④ は、「仮定の数が0である所の、連式の結論」である。
ということは、
③ は、「否定をすると、矛盾が生じるため、背理法(RAA)により、仮定の数が0になる。」
④ は、「否定をすると、矛盾が生じるため、背理法(RAA)により、仮定の数が0になる。」
ということを、「意味」している。
従って、
(10)(15)により、
(16)
「番号」を付け直すと、
① P→ P
② ~(P&~P)
③ ~P∨ P
④ (P→Q)→(P→Q)
⑤ P→((P→Q)→Q)
という「恒真式(トートロジー)」は、すべて、
②「否定をすると、矛盾が生じるため、背理法(RAA)により、仮定の数が0になる」所の「連式の結論」である。
然るに、
(17)
(ⅰ)
1(1) P&Q A
1(2) P 1&E
(3)(P&Q)→P 12CP
(ⅱ)
1(1)P A
1(2)P∨Q 1∨I
(3)P→(P∨Q) 12CP
然るに、
(18)
(ⅰ)
1(1) ~{ (P&Q)→P} A
1(2) ~{~(P&Q)∨P} 含意の定義
1(3) (P&Q)&~P 2ド・モルガンの法則
1(4) P&Q 3&E
1(5) P 4&E
1(6) ~P 3&E
1(7) P&~P 56&I
(8)~~{ (P&Q)→P} 17RAA
(9) (P&Q)→P 8DN
(ⅱ)
1(1) ~{ P→(P∨Q)} A
1(2) ~{~P∨(P∨Q)} 1含意の定義
1(3) P&~(P∨Q) 2ド・モルガンの法則
1(4) P 3&E
1(5) ~(P∨Q) 3&E
1(6) ~P&~Q 5ド・モルガンの法則
1(7) ~P 6&E
1(8) P&~P 47&I
(9)~~{ P→(P∨Q)} 18RAA
(ア) P→(P∨Q) 9DN
従って、
(16)(17)(18)により、
(19)
①(P&Q)→P
② P→(P∨Q)
である所の、
①「連言除去」
②「選言導入」
を含めて、「恒真式(トートロジー)」とは、
②「否定をすると、矛盾が生じるため、背理法(RAA)により、仮定の数が0になる」所の「連式の結論」である。
令和6年11月13日、毛利太。
0 件のコメント:
コメントを投稿