(01)
④ 太郎であるか、または、太郎であるならば、男性である。
といふ「日本語」が、「恒に真」である。
といふことを、『証明』します。
(02)
仮定の数がゼロである、「証明可能な連式の結論」は、「恒真式(トートロジー)」である。
(E.J.レモン著、竹尾治一郎・浅野楢英 訳、論理学初歩、1973年、64頁)
然るに、
(03)
(ⅰ)
1(1)P A
(2)P→P 11CP
(ⅱ)
1 (1) ~(~P∨P) A
2 (2) ~P A
2 (3) ~P∨P 2∨I
12 (4) ~(~P∨P)&
(~P∨P) 13&I
1 (5) ~~P 24RAA
1 (6) P 5DN
1 (7) ~P∨P 6∨I
1 (8) ~(~P∨P)&
(~P∨P) 17&I
(9)~~(~P∨P) 18RAA
(ア) ~P∨P 9DN
(ⅲ)
1 (1) ~(~P∨P) A
2 (2) ~P A
2 (3) ~P∨P 2∨I
12 (4) ~(~P∨P)&
(~P∨P) 13&I
1 (5) ~~P 24RAA
1 (6) P 5DN
1 (7) ~P∨P 6∨I
1 (8) ~(~P∨P)&
(~P∨P) 17&I
(9)~~(~P∨P) 18RAA
(ア) ~P∨P 9DN
イ (イ) ~P A
イ (ウ) ~P∨Q イ∨I
エ (エ) P&~Q A
オ (オ) ~P A
エ (カ) P エ&E
エオ (キ) ~P&P オカ&I
オ (ク) ~(P&~Q) エキRAA
ケ (ケ) Q A
エ (コ) ~Q エ&E
エ ケ (サ) Q&~Q ケコ&I
ケ (シ) ~(P&~Q) エサRAA
イ (ス) ~(P&~Q) イオクケシ∨E
セ (セ) P A
ソ (ソ) ~Q A
セソ (タ) P&~Q セソ&I
イ セソ (チ) ~(P&~Q)&
(P&~Q) スタ&I
イ セ (ツ) ~~Q ソチRAA
イ セ (テ) Q ツDN
イ (ト) P→ Q セテCP
イ (ナ)P∨(P→ Q) ト∨I
ニ(ニ) P A
ニ(ヌ)P∨(P→ Q) ニ∨I
(ネ)P∨(P→ Q) アイナニヌ∨E
従って、
(02)(03)により、
(04)
① P→P(同一律)
② ~P∨P(排中律)
③ P∨(P→Q)(練習問題5a)
といふ「論理式」は、3つとも「恒真式(トートロジー)」である。
従って、
(04)により、
(05)
① Pであるならば、Pである。
② Pでないか、または、Pである。
③ Pであるか、または、Pであるならば、Qである。
といふ「日本語」は、3つとも、「恒に真」である。
然るに、
(05)により、
(06)
① Pであるならば、Pである(同一律)。
② Pでないか、または、Pである(排中律)。
といふ「日本語」は、ともかく、
③ Pであるか、または、Pならば、Qである(練習問題5a)。
といふ「日本語」が、「恒に真である」。
といふことは、「分かり難い(意外である)」。
然るに、
(07)
P,Qの二つを組みにする場合、「非排他的な選言」は、「PまたはQ,またはその両方」と言います(易しくない論理学)。
然るに、
(08)
③ P∨(P→Q)
③ Pであるか、または、Pであるならば、Qである。
の場合は、「非排他的な選言」である。
従って、
(07)(08)により、
(09)
③ P∨(P→Q)
である場合は、
④ Pだけが 「真」であることも、
⑤(P→Q)だけが 「真」であることも、
⑥ Pと(P→Q)が「真」であることも、「可能」である。
然るに、
(10)
1(1)P&(P→Q) A
1(2)P 1&E
1(3) P→Q 1&E
1(4) Q 23MPP
然るに、
(09)(10)により、
(11)
③ P∨(P→Q)
である場合に、
④ であるとしても、Qであるとは、「限らない」。
⑤ であるとしても、Qであるとは、「限らない」が、
⑥ であるならば、 Qである。
従って、
(11)により、
(12)
③ P∨(P→Q)
といふ「論理式」が「真」であるならば、
③ Qであるか、または、Qでない。
といふ「日本語」は「真」である。
従って、
(04)(05)(12)により、
(13)
「番号」を「付け替へ」るものの、
① Q∨~Q
② P∨(P→~Q)
③ Qであるか、または、Qでない。
④ Pであるか、または、Pであるならば、Qである。
といふ「論理式・日本語」に於いて、
①=②=③=④ である。
従って、
(13)により、
(14)
③ Qであるか、または、Qでない。
④ Pであるか、または、Pであるならば、Qである。
といふ「日本語」に於いて、
③=④ である。
従って、
(14)により、
(15)
Q=男性である。
P=太郎である。
として、
③ 男性であるか、または、男性ではない。
④ 太郎であるか、または、太郎であるならば、男性である。
といふ「日本語」に於いて、
③=④ である。
然るに、
(16)
③ 男性であるか、または、男性ではない。
といふ「命題(排中律)」は、「恒に真」である。
従って、
(15)(16)により、
(17)
④ 太郎であるか、または、太郎であるならば、男性である。
といふ「命題(排中律)」も、「恒に真」である。
然るに、
(18)
④ 太郎であるか、または、太郎であるならば、男性である。
といふ「命題」が、「排中律」である。
といふことは、「(論理学に疎い)普通の人」は、「気付かない」。
従って、
(18)により、
(19)
④ 太郎であるか、または、太郎であるならば、男性である。
といふ「命題」が、「恒に真」である。
といふことに、「(論理学に疎い)普通の人」は、「気付かない」。
然るに、
(20)
5 原始的規則あるいは導出された規則を、既に証明されたどのような連式あるいは定理とでもともに用いて、証明せよ。
5 Using primitive or deriverd rulues, together with any sequents or theorems already proved,prove.
(E.J.レモン著、竹尾治一郎・浅野楢英 訳、論理学初歩、1973年、80頁)
(a)├ P∨(P→Q)
〔(私の)解答〕
(1) ~P∨P 排中律
2 (2) ~P A
2 (3) ~P∨Q 2∨I
2 (4) P→Q 3含意の定義
2 (5)P∨(P→Q) 4∨I
6(6) P A
6(7)P∨(P→Q) 6∨I
(8)P∨(P→Q) 12566∨E
従って、
(01)(02)(03)(13)(15)(20)により、
(21)
いづれにせよ、
④ 太郎であるか、または、太郎であるならば、男性である。
といふ「命題」は、「恒に真」である。
令和5年10月15日、毛利太。
0 件のコメント:
コメントを投稿