(01)
①{P }ならば{Pである}。
②{P&Q}ならば{Pである}。
といふ「演繹推理」に於いて、
① ならば、② である。
従って、
(01)により、
(02)
演繹推理では、前提を追加しても結論は不変である。結論は前提に含まれるものだけを導出するため、
新前提を加えても、これらによって結論が変わるわけではないからである。
(岩波全書、論理学入門、156頁)
然るに、
(03)
(a)
1 (1)∀x{象x→∀z(~鼻zx→~長z)} A
2 (2)∀x{兎x→∃z(~鼻zx& 長z)} A
3 (3)∃x(象x&兎x) A
1 (4) 象a→∀z(~鼻za→~長z)} 1UE
2 (5) 兎a→∃z(~鼻za& 長z)} 2UE
6 (6) 象a&兎a A
6 (7) 象a 6&E
6 (8) 兎a 6&E
1 6 (9) ∀z(~鼻za→~長z) 47MPP
2 6 (ア) ∃z(~鼻za& 長z) 58MPP
1 6 (イ) ~鼻ba→~長b 9UE
ウ (ウ) ~鼻ba& 長b A
ウ (エ) ~鼻ba ウ&E
1 6ウ (オ) ~長b イエMPP
ウ (カ) 長b ウ&E
1 6ウ (キ) ~長b&長b オア&I
12 6 (ク) ~長b&長b アウキEE
123 (ケ) ~長b&長b 36クEE
12 (コ)~∃x(象x&兎x) 3ケRAA
12 (サ)∀x~(象x&兎x) コ量化子の関係
12 (シ) ~(象a&兎a) サUE
ス (ス) 象a A
セ(セ) 兎a A
スセ(ソ) 象a&兎a スセ&I
12 スセ(タ) ~(象a&兎a)&(象a&兎a) シソ&I
12 ス (チ) ~兎a セRAA
12 (ツ) 象a→~兎a スチCP
12 (テ)∀x(象x→~兎x) ツUI
(b)
1 (1) ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
2 (2) ∀x{兎x→∃z(耳zx&~鼻zx&長z)} A
3 (3) ∃x(象x&兎x) A
1 (4) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
2 (5) 兎a→∃z(耳za&~鼻za&長z) 2UE
6 (6) 象a&兎a A
6 (7) 象a 6&E
6 (8) 兎a 6&E
1 6 (9) ∀z(~鼻za→~長z) 47MPP
1 6 (ア) ~鼻ba→~長b 9UI
2 6 (イ) ∃z(耳za&~鼻za&長z) 58MPP
ウ (ウ) 耳ba&~鼻ba&長b A
ウ (エ) ~鼻ba ウ&E
ウ (オ) 長b ウ&E
1 6ウ (カ) ~長b アエMPP
1 6ウ (キ) 長b&~長b オカ&I
12 6 (ク) 長b&~長b イウキEE
123 (ケ) 長b&~長b 36クEE
12 (コ)~∃x(象x&兎x) 3ケRAA
12 (サ)∀x~(象x&兎x) コ量化子の関係
12 (シ) ~(象a&兎a) サUE
ス (ス) 象a A
セ(セ) 兎a A
スセ(ソ) 象a&兎a スセ&I
12 スセ(タ) ~(象a&兎a)&(象a&兎a) シソ&I
12 ス (チ) ~兎a セタRAA
12 (ツ) 象a→~兎a スチCP
12 (テ)∀x(象x→~兎x) ツUI
従って、
(01)(02)(03)により、
(04)
『演繹推理では、前提を追加しても結論は不変である。』
といふ「理由」により、
① ∀x{象x→∀z(~鼻zx→~長z)}。然るに、
② ∀x{兎x→∃z(~鼻zx& 長z)}。従って、
③ ∀x(象x→~兎x)。
といふ「推論」は、「事実上」、
④ ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。然るに、
⑤ ∀x{兎x→∃z(耳zx&~鼻zx&長z)}。従って、
⑥ ∀x(象x→~兎x)。
といふ「推論」に、「等しい」。
従って、
(04)により、
(05)
① すべてのxについて{xが象であるならば、すべてのzについて(zがxの鼻ではないならば、zは長くない)}。
② すべてのxについて{xが兎であるならば、あるzは(xの鼻ではないが、zは長い)}。
③ すべてのxについて(xが象であるならば、xは兎ではない)。
といふ「推論」は、「事実上」、
④ すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)、すべてのzについて(zがxの鼻ではないならば、zは長くない)}。
⑤ すべてのxについて{xが兎であるならば、あるzは(xの耳であって、長いが、zは鼻ではない)}。
⑥ すべてのxについて(xが象であるならば、xは兎ではない)。
といふ「推論」に、「等しい」。
従って、
(02)(04)(05)により、
(06)
④ 象は鼻が長い。 然るに、
⑤ 兎の耳は長いが、耳は鼻ではない。従って、
⑥ 象は兎ではない。
といふ「推論」は、「事実上」、
① 象は、鼻以外は長くない。然るに、
② 兎は、鼻以外が長い。従って、
③ 象は兎ではない。
といふ「推論」に、「等しい」。
従って、
(06)により、
(07)
④ 象は鼻が長い。 然るに、
⑤ 兎の耳は長いが、耳は鼻ではない。従って、
⑥ 象は兎ではない。
といふ「推論」が「妥当」であるならば、
④ 象は鼻が長い。
といふ「日本語」は、「必然的」に、
① 象は、鼻以外は長くない。
といふ「意味」を「含意」する。
然るに、
(08)
④ 象は鼻が長い。 然るに、
⑤ 兎の耳は長いが、耳は鼻ではない。従って、
⑥ 象は兎ではない。
といふ「推論」は「妥当」である。
従って、
(07)(08)により、
(09)
④ 象は鼻が長い。
といふ「日本語」は、「必然的」に、
① 象は鼻以外は長くない。
といふ「意味」を「含意」する。
従って、
(04)(05)(09)により、
(10)
① 象は鼻が長い。⇔
① 象は鼻は長く、鼻以外は長くない。⇔
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。⇔
① すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)、すべてのzについて(zがxの鼻ではないならば、zは長くない)}。
といふ「等式」が、「成立」する。
令和5年6月10日、毛利太。
0 件のコメント:
コメントを投稿