2020年7月8日水曜日

「パースの法則」と「ルカジェヴィッツの公理(Ⅰ)」。

(01)
  ― ルカジェヴィッツの公理(Ⅰ)―
1     (1)      P   A
1     (2)  ~Q∨ P   A
 3    (3)   Q&~P   A
  4   (4)  ~Q      A
 3    (5)   Q      3&E
 34   (6)  ~Q&Q    45&I
  4   (7) ~(Q&~P)  36RAA
   8  (8)      P   A
 3    (9)     ~P   3&E
 3 8  (ア)   P&~P   89&I
   8  (イ) ~(Q&~P)  3アRAA
1     (ウ) ~(Q&~P)  2478イ∨E
    エ (エ)   Q      A
     オ(オ)     ~P   A
    エオ(カ)   Q&~P   エオ&I
1   エオ(キ) ~(Q&~P)&
           (Q&~P)  ウカ&I
1   エ (ク)    ~~P   オキRAA
1   エ (ケ)      P   クDN
1     (コ)   Q→ P   エケCP
      (サ)P→(Q→ P)  1コCP
従って、
(01)により、
(02)
① P→(Q→P)≡Pならば(QならばPである)。
といふ「式」は、「恒真式(トートロジー)」である。
然るに、
(03)
  ― ルカジェヴィッツの公理(Ⅰ)―
1     (1)       P   A
1     (2)  ~~Q∨ P   A
 3    (3)   ~Q&~P   A
  4   (4)  ~~Q      A
 3    (5)   ~Q      3&E
 34   (6)  ~~Q&~Q   45&I
  4   (7) ~(~Q&~P)  36RAA
   8  (8)       P   A
 3    (9)      ~P   3&E
 3 8  (ア)    P&~P   89&I
   8  (イ) ~(~Q&~P)  3アRAA
1     (ウ) ~(~Q&~P)  2478イ∨E
    エ (エ)   ~Q      A
     オ(オ)      ~P   A
    エオ(カ)   ~Q&~P   エオ&I
1   エオ(キ) ~(~Q&~P)&
           (~Q&~P)  ウカ&I
1   エ (ク)     ~~P   オキRAA
1   エ (ケ)       P   クDN
1     (コ)   ~Q→ P   エケCP
      (サ)P→(~Q→ P)  1コCP
従って、
(03)により、
(04)
② P→(~Q→P)≡Pならば(QであるならばPである)。
といふ「式」は、「恒真式(トートロジー)」である。
従って、
(02)(04)により、
(05)
① P→( Q→P)≡Pならば(QであるならばPである)。
② P→(~Q→P)≡Pならば(QでないならばPである)。
といふ「式」は、「恒真式(トートロジー)」である。
然るに、
(05)により、
(06)
① Pならば(QであるならばPである)。
② Pならば(QでないならばPである)。
といふことは、
① Pならば(Qであらうと、Qでなからうと、Pである)。
といふことである。
従って、
(05)(06)により、
(07)
① P→( Q→P)≡Pならば(QであるならばPである)。
といふ「ルカジェヴィッツの公理(Ⅰ)」は、実際には、
① P→( Q→P)≡Pならば(Qであろうと、Qでなかろうと、Pである)。
といふ「意味」である。
然るに、
(08)
① P→(Q→P)
といふ「式」は、「左から右へ、そのまま読む」と、
① Pならば(QであるならばPである)。
といふ風に、「読む」ことになる。
従って、
(07)(08)により、
(09)
① P→(Q→P)
といふ「ルカジェヴィッツの公理(Ⅰ)」は、「読み方と意味」の間に、「齟齬」が有る。
然るに、
(10)
  ―「パースの法則」―
(ⅰ)
1   (1)  (P→Q)→P   A
 2  (2)  ~P∨Q      A
 2  (3)   P→Q      2含意の定義
12  (4)        P   13MPP
1   (5) (~P∨Q)→P   24CP
1   (6)~(~P∨Q)∨P   5含意の定義
  7 (7)~(~P∨Q)     A
  7 (8)  P&~Q      7ド・モルガンの法則
  7 (9)  P         8&E
   ア(ア)        P   A
1   (イ)  P         679アア∨E
    (ウ)((P→Q)→P)→P 1イCP
(ⅱ)
1   (1)  (P→~Q)→P   A
 2  (2)  ~P∨~Q      A
 2  (3)   P→~Q      2含意の定義
12  (4)         P   13MPP
1   (5) (~P∨~Q)→P   24CP
1   (6)~(~P∨~Q)∨P   5含意の定義
  7 (7)~(~P∨~Q)     A
  7 (8)  P&~~Q      7ド・モルガンの法則
  7 (9)  P          8&E
   ア(ア)         P   A
1   (イ)  P          679アア∨E
    (ウ)((P→~Q)→P)→P 1イCP
従って、
(10)により、
(11)
①((P→ Q)→P)→P≡Pならば、Qであるならば、Pならば、Pである。
②((P→~Q)→P)→P≡Pならば、Qでないならば、Pならば、Pである。
といふ「式」は、「恒真式(トートロジー)」である。
従って、
(11)により、
(12)
①((P→  Q)→P)→P≡ Pならば、Qであるならば、Pならば、Pである。
といふ「パースの法則」は、実際には、
①((P→ Q)→P)→P≡(Pならば、Qであらうと、Qでなからうと)Pなので、Pである。
といふ「意味」である。
然るに、
(13)
①((P→Q)→P)→P
といふ「式」は、「左から右へ、そのまま読む」と、
① Pならば、Qであるならば、Pならば、Pである。
といふ風に、「読む」ことになる。
従って、
(09)(12)(13)により、
(14)
①((P→Q)→P)→P
といふ「パースの法則」も、「読み方と意味」の間に、「齟齬」が有る。
然るに、
(15)
① P→(Q→P)
②((P→Q)→P)→P
に於ける、
② から、
② 最後の、P
を除くと、
①  P→(Q→P)
②(P→Q)→P
となるものの、この場合、
①=② ではない
といふことに、「注意」すべきである。
然るに、
(16)
(ⅰ)
1   (1)  (P→Q)→P A
 2  (2)  ~P∨Q    A
 2  (3)   P→Q    2含意の定義
12  (4)        P 13MPP
1   (5) (~P∨Q)→P 24CP
1   (6)~(~P∨Q)∨P 5含意の定義
  7 (7)~(~P∨Q)   A
  7 (8)  P&~Q    7ド・モルガンの法則
  7 (9) (P&~Q)∨P 8∨I
   ア(ア)        P A
1   (イ) (P&~Q)∨P 679アイ∨E
(ⅱ)
1   (1) (P&~Q)∨P A
 2  (2) (P&~Q)   2
 2  (3)~(~P∨Q)   2ド・モルガンの法則
 2  (4)~(~P∨Q)∨P 2∨I
  5 (5)        P A
  5 (6)~(~P∨Q)∨P 5∨I
1   (7)~(~P∨Q)∨P 12456∨I
1   (8)  (P→Q)→P 7含意の定義
従って、
(16)により、
(17)
①(P→  Q)→P≡(PならばQである)ならばPである。
②(P&~Q)∨P≡(Pであって、Qでない)か、または、Pである。
に於いて、
①=② である。
然るに、
(18)
②(P&~Q)∨P
の場合は、
②(偽&~Q)∨偽
であれば、「Qの真偽」に拘らず、「偽」である。
従って、
(18)により、
(19)
①(P&~Q)∨P≡(Pであって、Qでない)か、または、Pである。
といふ「式」は、「恒真式(トートロジー)」ではない。
従って、
(17)(18)(19)により、
(20)
①(P→  Q)→P≡(PならばQである)ならばPである。
②(P&~Q)∨P≡(Pであって、Qでない)か、または、Pである。
といふ「式」は、両方とも、「恒真式(トートロジー)」ではない。
(02)(04)(20)により、
(21)
①   P→(Q→P)
② (P→ Q)→P
③((P→ Q)→P)→P
に於いて、
① は、「恒真式(トートロジー)」であり、
② は、「恒真式(トートロジー)」ではなく、
③ は、「恒真式(トートロジー)」である。
然るに、
(17)により、
(22)
②((P&~Q)∨P)→P
③((P→ Q)→P)→P
に於いて、
②=③ である。
然るに、
(23)
②((P&~Q)∨P)→P
といふ「式」は、
②((Pであって、Qでない)か、または、Pである)ならばPである。
といふ「意味」である。
然るに、
(24)
②((Pであって、Qでない)か、または、Pである)ならばPである。
といふ「命題」は、「偽」ではあり得ない。
従って、
(22)(23)(24)により、
(25)
②((P&~Q)∨P)→P
③((P→ Q)→P)→P
といふ「式」は、両方とも、「恒真式(トートロジー)」である。
令和02年07月08日、毛利太。

0 件のコメント:

コメントを投稿