(01)
1(1) P& Q& R A
1(2) R 1&E
1(3) Q∨R 2∨I
1(4)~(P&Q)∨Q∨R 3∨I
1(5) P&Q→ Q∨R 4含意の定義
(ⅱ)
1(1) P& Q&~R A
1(2) Q 1&E
1(3) Q∨R 2∨I
1(4)~(P&Q)∨Q∨R 3∨I
1(5) P&Q→ Q∨R 4含意の定義
(ⅲ
1(1) P&~Q& R A
1(2) R 1&E
1(3) Q∨R 2∨I
1(4)~(P&Q)∨Q∨R 3∨I
1(5) P&Q→ Q∨R 4含意の定義
(ⅳ
1 (1) P&~Q&~R A
1 (2) ~Q 1&E
2(3) P& Q A
2(4) Q 3&E
12(5) ~Q&Q 34&I
1 (6)~(P&Q) 25RAA
1 (7)~(P&Q)∨Q 6∨I
1 (8)~(P&Q)∨Q∨R 7∨I
1 (9) P&Q→ Q∨R 8含意の定義
(ⅴ
1(1) ~P& Q& R A
1(2) R 1&E
1(3) Q∨R 2∨I
1(4)~(P&Q)∨Q∨R 3∨I
1(5) P&Q→ Q∨R 4含意の定義
(ⅵ
1(1) ~P& Q&~R A
1(2) Q 1&E
1(3) Q∨R 2∨I
1(4)~(P&Q)∨Q∨R 3∨I
1(5) P&Q→ Q∨R 4含意の定義
(ⅶ
1(1) ~P&~Q& R A
1(2) R 1&E
1(3) Q∨R 2∨I
1(4)~(P&Q)∨Q∨R 3∨I
1(5) P&Q→ Q∨R 4含意の定義
(ⅷ
1 (1) ~P&~Q& R A
1 (2) ~Q 1&E
2(3) P& Q A
2(4) Q 3&E
12(5) ~Q&Q 34&I
1 (6)~(P&Q) 25RAA
1 (7)~(P&Q)∨Q 6∨I
1 (8)~(P&Q)∨Q∨R 7∨I
1 (9) P&Q→ Q∨R 8含意の定義
従って、
(01)により、
(02)
① P& Q& R├ P&Q→Q∨R
② P& Q&~R├ P&Q→Q∨R
③ P&~Q& R├ P&Q→Q∨R
④ P&~Q&~R├ P&Q→Q∨R
⑤ ~P& Q& R├ P&Q→Q∨R
⑥ ~P& Q&~R├ P&Q→Q∨R
⑦ ~P&~Q& R├ P&Q→Q∨R
⑧ ~P&~Q&~R├ P&Q→Q∨R
従って、
(01)(02)により、
(03)
① P&Q→Q∨R
といふ「論理式」、すなはち、
① PであってQであるならば、Qであるか、または、Rである。
といふ「命題」は、
① 命題変数(P、Q、R)の「真偽」に関はらず、「恒に真」である。
従って、
(03)により、
(04)
① P&Q→Q∨R
といふ「論理式」は、「恒真式(トートロジー)」である。
然るに、
(05)
① P& Q& R
② P& Q&~R
③ P&~Q& R
④ P&~Q&~R
⑤ ~P& Q& R
⑥ ~P& Q&~R
⑦ ~P&~Q& R
⑧ ~P&~Q&~R
に於ける、例へば、
⑥ を「否定」すると、
⑥ ~( P& Q&~R)は、「ド・モルガンの法則」により、
⑥ (~P∨~Q∨ R)に、「等しい」。
然るに、
(06)
(ⅱ)
1(1)~P∨ ~Q∨R A
1(2)~P∨(~Q∨R) 1結合法則
1(3) P→(~Q∨R) 2含意の定義
(〃)
1(1) P→(~Q∨R) A
1(2)~P∨(~Q∨R) 1含意の定義
1(3)~P∨ ~Q∨R 2結合法則
従って、
(05)(06)により、
(07)
① P& Q& R
② P& Q&~R
③ P&~Q& R
④ P&~Q&~R
⑤ ~P& Q& R
⑥ ~P& Q&~R
⑦ ~P&~Q& R
⑧ ~P&~Q&~R
に於ける、例へば、
⑥ を「否定」すると、
⑥ ~(~P& Q&~R)は、「ド・モルガンの法則」により、
⑥ ( P∨~Q∨ R)に、「等しく」、
⑥ ( P∨~Q∨ R)は、「含意の定義」により、
⑥ ~P→(~Q∨R)に、「等しい」。
従って、
(07)により、
(08)
① P& Q& R
② P& Q&~R
③ P&~Q& R
④ P&~Q&~R
⑤ ~P& Q& R
⑥ ~P& Q&~R
⑦ ~P&~Q& R
⑧ ~P&~Q&~R
に於ける、
⑥ を「否定」すると、
⑥ ~P→(~Q∨R)
であるため、「否定」をする前の、
⑥ 自体は、 「二重否定」により、
⑥ ~(~P→(~Q∨R))
でなければ、ならない。
従って、
(02)(08)により、
(09)
この場合は、
① P& Q& R├ P&Q→Q∨R
② P& Q&~R├ P&Q→Q∨R
③ P&~Q& R├ P&Q→Q∨R
④ P&~Q&~R├ P&Q→Q∨R
⑤ ~P& Q& R├ P&Q→Q∨R
⑥ ~P& Q&~R├ P&Q→Q∨R
⑦ ~P&~Q& R├ P&Q→Q∨R
⑧ ~P&~Q&~R├ P&Q→Q∨R
のやうに、
① P& Q& R├ P→(~Q∨R)
② P& Q&~R├ P→(~Q∨R)
③ P&~Q& R├ P→(~Q∨R)
④ P&~Q&~R├ P→(~Q∨R)
⑤ ~P& Q& R├ P→(~Q∨R)
⑥ ~P& Q&~R├ P→(~Q∨R)
⑦ ~P&~Q& R├ P→(~Q∨R)
⑧ ~P&~Q&~R├ P→(~Q∨R)
といふ風には、ならずに、
① P& Q& R├ P→(~Q∨R)
② P& Q&~R├ P→(~Q∨R)
③ P&~Q& R├ P→(~Q∨R)
④ P&~Q&~R├ P→(~Q∨R)
⑤ ~P& Q& R├ P→(~Q∨R)
⑥ ~P& Q&~R├ ~(P→(~Q∨R))
⑦ ~P&~Q& R├ P→(~Q∨R)
⑧ ~P&~Q&~R├ P→(~Q∨R)
といふ風に、なるに「違ひない」。
然るに、
(10)
(ⅰ)
1(1) P& Q& R A
1(2) R 1&E
1(3) ~Q∨R 2∨I
1(4)~~P∨~Q∨R 3∨I
1(5) ~P→~Q∨R 4含意の定義
(ⅱ)
1(1) P& Q&~R A
1(2) P 1&E
1(3)~~P 2DN
1(4)~~P∨Q 3∨I
1(5)~~P∨Q∨R 4∨I
1(6) ~P→Q∨R 5∨I
(ⅲ)
1(1) P&~Q& R A
1(2) R 1&E
1(3) ~Q∨R 2∨I
1(4)~~P∨~Q∨R 3∨I
1(5) ~P→~Q∨R 4含意の定義
(ⅳ)
1(1) P&~Q&~R A
1(2) P 1&E
1(3)~~P 2DN
1(4)~~P∨Q 3∨I
1(5)~~P∨Q∨R 4∨I
1(6) ~P→Q∨R 5∨I
(ⅴ)
1(1) ~P& Q& R A
1(2) R 1&E
1(3) ~Q∨R 2∨I
1(4)~~P∨~Q∨R 3∨I
1(5) ~P→~Q∨R 4含意の定義
(ⅵ)
1 (1) ~P& Q&~R A
2 (2) ~P→~Q∨ R A
1 (3) ~P 1&E
12 (4) ~Q∨ R 23MPP
5 (5) ~Q A
1 (6) Q 1&E
1 5 (7) ~Q&Q 56&I
5 (8)~(~P& Q&~R) 17RAA
9(9) R A
1 (ア) ~R 1&E
1 9(イ) R&~R 9ア&I
9(ウ)~(~P& Q&~R) 1イRAA
12 (エ)~(~P& Q&~R) 4589ウ∨E
12 (オ) (~P& Q&~R)&
~(~P& Q&~R) 1エ&I
1 (カ)~(~P→~Q∨ R) 2オRAA
(ⅶ)
1(1) ~P&~Q& R A
1(2) R 1&E
1(3) ~Q∨R 2∨I
1(4)~~P∨~Q∨R 3∨I
1(5) ~P→~Q∨R 4含意の定義
(ⅷ)
1(1) ~P&~Q&~R A
1(2) ~Q 1&E
1(3) ~Q∨R 2∨I
1(4)~~P∨~Q∨R 3∨I
1(5) ~P→~Q∨R 4含意の定義
従って、
(09)(10)により、
(11)
果たして、
① P& Q& R├ P→(~Q∨R)
② P& Q&~R├ P→(~Q∨R)
③ P&~Q& R├ P→(~Q∨R)
④ P&~Q&~R├ P→(~Q∨R)
⑤ ~P& Q& R├ P→(~Q∨R)
⑥ ~P& Q&~R├ ~(P→(~Q∨R))
⑦ ~P&~Q& R├ P→(~Q∨R)
⑧ ~P&~Q&~R├ P→(~Q∨R)
である。
然るに、
(12)
(ⅵ)
1 (1) ~P& Q&~R A
2 (2) ~P→~Q∨ R A
1 (3) ~P 1&E
12 (4) ~Q∨ R 23MPP
5 (5) ~Q A
1 (6) Q 1&E
1 5 (7) ~Q&Q 67&I
5 (8)~(~P& Q&~R) 17RAA
9(9) R A
1 (ア) ~R 1&E
1 9(イ) R&~R 9ア&I
9(ウ)~(~P& Q&~R) 1イRAA
12 (エ)~(~P& Q&~R) 4589ウ∨I
12 (オ) (~P& Q&~R)&
~(~P& Q&~R) 1エ&I
1 (カ)~(~P→~Q∨ R) 2オRAA
(〃)
1 (1)~(~P→~Q∨ R) A
1 (2)~( P∨~Q∨ R) 1含意の定義
3 (3) P A
3 (4) P∨~Q 3∨I
3 (5) P∨~Q∨ R 4∨I
13 (6)~( P∨~Q∨ R)&
( P∨~Q∨ R) 25&I
1 (7) ~P 56RAA
8 (8) ~Q A
8 (9) P∨~Q 8∨I
8 (ア) P∨~Q∨ R 9∨I
1 8 (イ)~( P∨~Q∨ R)&
( P∨~Q∨ R) 2ア&I
1 (ウ) ~~Q 8RAA
1 (エ) Q ウDN
オ(オ) R A
オ(カ) ~Q∨ R オ∨I
オ(キ) P∨~Q∨ R ∨I
1 オ(ク)~( P∨~Q∨ R)&
( P∨~Q∨ R) 2キ&I
1 (ケ) ~R オクRAA
1 (コ) ~P& Q 7エ&I
1 (サ) ~P& Q&~R ケコ&I
従って、
(12)により、
(13)
⑥ ~P&Q&~R ├ ~(~P→~Q∨R)
であるだけではなく、
⑥ ~P&Q&~R ┤├ ~(~P→~Q∨R)
である。
従って、
(11)(13)により、
(14)
① P& Q& R├ P→(~Q∨R)
② P& Q&~R├ P→(~Q∨R)
③ P&~Q& R├ P→(~Q∨R)
④ P&~Q&~R├ P→(~Q∨R)
⑤ ~P& Q& R├ P→(~Q∨R)
⑦ ~P&~Q& R├ P→(~Q∨R)
⑧ ~P&~Q&~R├ P→(~Q∨R)
である一方で、
⑥ ~P& Q&~R ┤├ ~(P→(~Q∨R))
であるため、
⑥ ~P→(~Q∨R)
といふ「論理式」、
⑥ Pでないならば、Qでないか、または、Rである。
といふ「命題」は、
⑥ 命題変数(P、Q、R)の「真偽」に関はらず、「恒に真」である。
といふことには、ならない。
従って、
(03)(14)により、
(15)
① PであってQであるならば、Qであるか、または、Rである。
⑥ Pでないならば、Qでないか、または、Rである。
に於いて、
① は、「恒真式(トートロジー)」であって、
⑥ は、「恒真式(トートロジー)」ではない。
令和6年2月22日、毛利太。
0 件のコメント:
コメントを投稿