(01)
ある動物が、最大の動物である。ならば、
その動物以外に、最大の動物は、ゐない。
従って、
(01)により、
(02)
(ⅰ)象が最大の動物である。然るに、
(ⅱ)馬は象ではないが、動物である。従って、
(ⅲ)象と馬は動物であって、象は馬よりも大きい。
といふ「推論」は「妥当」である。
然るに、
(03)
1 (1)∀x{象x→動物x&∀y(~象y&動物y→大xy)} A
2 (2)∀y(馬y→~象y&動物y) A
2 (〃)すべてのyについて{yが馬ならば、yは象ではないが、動物である)。A
1 (3) 象a→動物a&∀y(~象y&動物y→大ay) 1UE
1 (4) 象a→動物a 3&E
1 (5) ∀y(~象y&動物y→大ay) 3&E
1 (6) ~象b&動物b→大ab 5UE
12 (7) 馬b→~象b&動物b 2UE
8(8) 象a&馬b A
8(9) 馬b 8&E
128(ア) ~象b&動物b 79MPP
128(イ) 大ab 6アMPP
128(ウ) 動物b ア&E
128(エ) 動物b&大ab イウ&I
8(オ) 象a 8&E
1 8(カ) 動物a 4オMPP
128(キ) 動物a&動物b&大ab エカ&I
12 (ク) 象a&馬b→動物a&動物b&大ab 8キCP
12 (ケ) ∀y(象a&馬y→動物a&動物y&大ay) クUI
12 (コ)∀x∀y(象x&馬y→動物x&動物y&大xy) ケUI
12 (〃)すべてのxとyについて(xが象であってyが馬ならば、xは動物であり、yも動物であり、xはyよりも大きい)。ケUI
従って、
(03)により、
(04)
1 (1)∀x{象x→動物x&∀y(~象y&動物y→大xy)} A
2 (2)∀y(馬y→~象y&動物y) A
12 (コ)∀x∀y(象x&馬y→動物x&動物y&大xy) ケUI
といふ「推論」は「妥当」である。
従って、
(01)~(04)により、
(05)
象が最大の動物である。⇔
象は動物であって、象以外の動物よりも、象は大きい。⇔
∀x{象x→動物x&∀y(~象y&動物y→大xy)}⇔
すべてのxについて{xが象ならば、xは動物であり、すべてのyについて(yが象でなくて、yが動物であるならば、xはyよりも大きい)}。
といふ「等式」が、成立する。
令和03年02月20日、毛利太。
0 件のコメント:
コメントを投稿