1 (1) ∀x{象x→~∃z(~鼻zx&長z)} A
2 (2) ∀x{兎x→ ∃z(~鼻zx&長z)} A
1 (3) 象a→~∃z(~鼻za&長z) 1UE
2 (4) 兎a→ ∃z(~鼻za&長z) 2UE
5 (5) ~∀x(象x→~兎x) A
5 (6) ∃x~(象x→~兎x) 5量化子の関係
7(7) ~(象a→~兎a) A
7(8) ~(~象a∨~兎a) 7含意の定義
7(9) 象a& 兎a 8ド・モルガンの法則
7(ア) 象a 9&E
7(イ) 兎a 9&E
1 7(ウ) ~∃z(~鼻za&長z) 3アMPP
2 7(エ) ∃z(~鼻za&長z) 4イMPP
12 7(オ) ~∃z(~鼻za&長z)&
∃z(~鼻za&長z) イウ&I
125 (カ) ~∃z(~鼻za&長z)&
∃z(~鼻za&長z) 67オEE
12 (キ)~~∀x(象x→~兎x) 5カRAA
12 (ク) ∀x(象x→~兎x) キDN
従って、
(01)により、
(02)
① ∀x{象x→~∃z(~鼻zx&長z)}。然るに、
② ∀x{兎x→ ∃z(~鼻zx&長z)}。従って、
③ ∀x(象x→~兎x)。
といふ「演繹推理」は、「妥当」である。
然るに、
(03)
(演繹推理は)前提を追加しても結論は不変でよい。結論は前提が含むものだけを導出するのであるから、
新前提を加えても、これから新結論を引き出す必要はないからである(岩波全書、論理学入門、156頁)。
従って、
(02)(03)により、
(04)
① ∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ ∀x(象x→~兎x)。
といふ「演繹推理」は、「妥当」である。
然るに、
(02)(04)により、
(05)
① ∀x{象x→∃y(鼻yx&長y)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ ∀x(象x→~兎x)。
といふ「演繹推理」の場合は、「前提を追加した」のではなく「(結論を導く上での)前提を除外してゐる」。
従って、
(03)(04)(05)により、
(06)
① ∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ ∀x(象x→~兎x)。
といふ「演繹推理」は、「妥当」であるが、
① ∀x{象x→∃y(鼻yx&長y)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ ∀x(象x→~兎x)。
といふ「演繹推理」は、「妥当」ではない。
従って、
(06)により、
(07)
① ∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ すべてのxについて(xが象であるならば、xは兎ではない)。
といふ「演繹推理」は、「妥当」であるが、
① ∀x{象x→∃y(鼻yx&長y)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ すべてのxについて(xが象であるならば、xは兎ではない)。
といふ「演繹推理」は、「妥当」ではない。
従って、
(07)により、
(08)
① ∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」であるが、
① ∀x{象x→∃y(鼻yx&長y)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」ではない。
従って、
(08)により、
(09)
① 象は鼻が長い。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」であるが、
① 象は鼻が長い。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」ではない。
従って、
(08)(09)により、
(10)
① 象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。
といふ「翻訳」に対する、
① 象は鼻が長い=∀x{兎x→∃y(耳yx&長y)}。
といふ「翻訳」、すなはち、
① 象は鼻が長い=すべてのxについて、もしそのxが象であるならば、yなるものが存在し、そのyは鼻であり、xはyを所有しており、このyは長い。
といふ「翻訳」は、『誤訳』である。
然るに、
(11)
たとえば「象は鼻が長い」というような表現は、象が主語なのか、鼻が主語なのかはっきりしないから、このままではその論理的構造が明示されていない。
いわば非論理的な文章である、というひともある。しかしこの文の論理的な構造をはっきりと文章にあらわして
「すべてのxについて、もしそのxが象であるならば、yなるものが存在し、そのyは鼻であり、xはyを所有しており、このyは長い」
といえばいいかもしれない(沢田充茂、現代論理学入門、1962年、29頁)。
従って、
(01)~(11)により、
(12)
① ∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」であるが、
① ∀x{象x→∃y(鼻yx&長y)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」ではない。
といふ「意味」に於いて、「沢田先生」による、
① 象は鼻が長い=すべてのxについて、もしそのxが象であるならば、yなるものが存在し、そのyは鼻であり、xはyを所有しており、このyは長い。
といふ「翻訳」は、『誤訳』である。
令和5年4月18日、毛利太。
(05)
① ∀x{象x→∃y(鼻yx&長y)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ ∀x(象x→~兎x)。
といふ「演繹推理」の場合は、「前提を追加した」のではなく「(結論を導く上での)前提を除外してゐる」。
従って、
(03)(04)(05)により、
(06)
① ∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ ∀x(象x→~兎x)。
といふ「演繹推理」は、「妥当」であるが、
① ∀x{象x→∃y(鼻yx&長y)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ ∀x(象x→~兎x)。
といふ「演繹推理」は、「妥当」ではない。
従って、
(06)により、
(07)
① ∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ すべてのxについて(xが象であるならば、xは兎ではない)。
といふ「演繹推理」は、「妥当」であるが、
① ∀x{象x→∃y(鼻yx&長y)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ すべてのxについて(xが象であるならば、xは兎ではない)。
といふ「演繹推理」は、「妥当」ではない。
従って、
(07)により、
(08)
① ∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」であるが、
① ∀x{象x→∃y(鼻yx&長y)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」ではない。
従って、
(08)により、
(09)
① 象は鼻が長い。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」であるが、
① 象は鼻が長い。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」ではない。
従って、
(08)(09)により、
(10)
① 象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。
といふ「翻訳」に対する、
① 象は鼻が長い=∀x{兎x→∃y(耳yx&長y)}。
といふ「翻訳」、すなはち、
① 象は鼻が長い=すべてのxについて、もしそのxが象であるならば、yなるものが存在し、そのyは鼻であり、xはyを所有しており、このyは長い。
といふ「翻訳」は、『誤訳』である。
然るに、
(11)
たとえば「象は鼻が長い」というような表現は、象が主語なのか、鼻が主語なのかはっきりしないから、このままではその論理的構造が明示されていない。
いわば非論理的な文章である、というひともある。しかしこの文の論理的な構造をはっきりと文章にあらわして
「すべてのxについて、もしそのxが象であるならば、yなるものが存在し、そのyは鼻であり、xはyを所有しており、このyは長い」
といえばいいかもしれない(沢田充茂、現代論理学入門、1962年、29頁)。
従って、
(01)~(11)により、
(12)
① ∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)& ∃z(~鼻zx&長z)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」であるが、
① ∀x{象x→∃y(鼻yx&長y)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)}。従って、
③ 象は兎ではない。
といふ「演繹推理」は、「妥当」ではない。
といふ「意味」に於いて、「沢田先生」による、
① 象は鼻が長い=すべてのxについて、もしそのxが象であるならば、yなるものが存在し、そのyは鼻であり、xはyを所有しており、このyは長い。
といふ「翻訳」は、『誤訳』である。
令和5年4月18日、毛利太。
0 件のコメント:
コメントを投稿