2020年11月13日金曜日

「トランプが大統領である」の「述語論理」の説明(Ⅱ)。

(01)
(ⅰ)
1    (1)∀x{Px→(Tx∨Bx)} A
 2   (2)∀x(Fx→~Px)     A
  3  (3)∃x(Bx&Fx)      A
1    (4)   Pa→(Ta∨Ba)  1UE
 2   (5)   Fa→~Pa      1UE
   6 (6)   Ba&Fa       A
    7(7)   Pa          A
1   7(8)       Ta∨Ba   47MPP
1   7(9)       Ba∨Ta   8交換法則
1   7(ア)     ~~Ba∨Ta   9DN
1   7(イ)      ~Ba→Ta   ア含意の定義
   6 (ウ)       Fa      6&E
 2 6 (エ)      ~Pa      5ウMPP
 2 67(オ)   Pa&~Pa      7エ&I
 2  7(カ) ~(Ba& Fa)     6オRAA
 2  7(キ)  ~Ba∨~Fa      カ、ド・モルガンの法則
 2  7(ク)  ~Fa∨~Ba      キ交換法則
 2  7(ケ)   Fa→~Ba      ク含意の定義
 2 67(コ)      ~Ba      ウケMPP
 23 7(サ)      ~Ba      36コEE
123 7(シ)          Ta   イサMPP
123  (ス)   Pa→Ta       7シCP
123  (セ)∀x(Px→Tx)      スUI
といふ「計算」を、「計算(01)」とする。
(02)
(ⅱ)
1    (1)∀x{Px→(Tx∨Bx)} A
 2   (2)∀x(Fx→~Px)     A
  3  (3)∃x(Bx&Fx)      A
1    (4)   Pa→(Ta∨Ba)  1UE
 2   (5)   Fa→~Pa      1UE
   6 (6)   Ba&Fa       A
    7(7)   Pa          A
1   7(8)       Ta∨Ba   47MPP
1   7(9)       Ba∨Ta   8交換法則
1   7(ア)     ~~Ba∨Ta   9DN
1   7(イ)      ~Ba→Ta   ア含意の定義
   6 (ウ)       Fa      6&E
 2 6 (エ)      ~Pa      5ウMPP
 2 67(オ)   Pa&~Pa      7エ&I
 2  7(カ) ~(Ba& Fa)     6オRAA
 2  7(キ)  ~Ba∨~Fa      カ、ド・モルガンの法則
 2  7(ク)   Ba→~Fa      キ含意の定義
   6 (ケ)   Ba          6&E
 2 67(コ)      ~Fa      クケMPP
 2 67(サ)   ∃x(~Fx)     コEI
 23 7(シ)   ∃x(~Fx)     26サEE
 23  (ス)Pa→∃x(~Fx)     7シCP
といふ「計算」を、「計算(02)」とする。
(03)
(ⅲ)
1    (1)∀x{Px→(Tx∨Bx)} A
 2   (2)∀x(Fx→~Px)     A
  3  (3)∃x(Bx&Fx)      A
1    (4)   Pa→(Ta∨Ba)  1UE
 2   (5)   Fa→~Pa      1UE
   6 (6)   Ba&Fa       A
    7(7)   Pa          A
1   7(8)       Ta∨Ba   47MPP
1   7(9)       Ba∨Ta   8交換法則
1   7(ア)     ~~Ba∨Ta   9DN
1   7(イ)      ~Ba→Ta   ア含意の定義
   6 (ウ)       Fa      6&E
 2 6 (エ)      ~Pa      5ウMPP
 2 67(オ)   Pa&~Pa      7エ&I
 2  7(カ) ~(Ba& Fa)     6オRAA
 2  7(キ)  ~Ba∨~Fa      カ、ド・モルガンの法則
 2  7(ク)   Ba→~Fa      キ含意の定義
   6 (ケ)   Ba          6&E
 2 67(コ)      ~Fa      クケMPP
 2 67(サ)   Fa&~Fa      ウコ&I
 2 6 (シ)  ~Pa          7サRAA
 2 6 (ス)∃x(~Px)        シEI
 23  (セ)∃x(~Px)        36スEE
といふ「計算」を、「計算(03)」とする。
従って、
(01)(02)(03)により、
(04)
①「計算(01)」
②「計算(02)」
③「計算(03)」は、それぞれ、
① ∀x{Px→(Tx∨Bx)},∀x(Fx→~Px),∃x(Bx&Fx)├ ∀x(Px→Tx)
②                ∀x(Fx→~Px),∃x(Bx&Fx)├ Pa→∃x(~Fx)
②                ∀x(Fx→~Px),∃x(Bx&Fx)├    ∃x(~Px)
といふ「連式(推論)」に相当する。
従って、
(01)~(04)により、
(05)
①「計算(01)」
②「計算(02)」
③「計算(03)」に於ける、
① ├ ∀x(Px→Tx)
② ├ Pa→∃x(~Fx)
③ ├    ∃x(~Px)
といふ「結論」の「違ひ」は、
Fa→~Ba
Ba→~Fa
Ba→~Fa
といふ「違ひ」を「原因」とする。
然るに、
(06)
P=大統領である。
F=不正を行ふ。
T=トランプである。
B=バイデンである。
とすると、
(1)∀x{Px→(Tx∨Bx)} A
(2)∀x(Fx→~Px)     A
(3)∃x(Bx&Fx)      A
といふ「3つの仮定」は、
(1)すべてのxについて{xが大統領であるならば(xはトランプか、または、バイデンである)}。然るに、
(2)すべてのxについて(xが不正を行ったのであれば、xは大統領ではない)。然るに、
(3)あるxは(バイデンであって、不正を行った)。従って、
といふ「意味」である。
従って、
(06)により、
(07)
(1)∀x{Px→(Tx∨Bx)} A
(2)∀x(Fx→~Px)     A
(3)∃x(Bx&Fx)      A
といふ「3つの仮定」は、
(1)大統領は、トランプか、バイデンである。
(2)不正を行った者は、大統領にはなれない。
(3)バイデンは、不正を行った。
といふ「意味」である。
従って、
(04)(07)により、
(08)
①「計算(01)」は、
(1)大統領は、トランプか、バイデンである。
(2)不正を行った者は、大統領にはなれない。
(3)バイデンは、不正を行った。
といふ「3つの仮定」の内の「3つ」を用ひてゐるのに対して、
②「計算(02)」と、
③「計算(03)」の場合は、
(2)不正を行った者は、大統領にはなれない。
(3)バイデンは、不正を行った。
といふ「2つの仮定」しか、用ひてゐない。
然るに、
(06)(07)により、
(09)
①├ ∀x(Px→Tx)
②├ Pa→∃x(~Fx)
②├    ∃x(~Px)
といふ「3つの結論」は、それぞれ、
① 大統領はトランプである。
② 任意のaが大統領であるならば、不正を行はなかった人物が存在する。
③ 大統領ではない人物が存在する。
といふ「意味」である。
従って、
(05)(07)(09)により、
(10)
(1)大統領は、トランプか、バイデンである。然るに、
(2)不正を行った者は、大統領にはなれない。然るに、
(3)バイデンは、不正を行った。従って、
(セ)大統領はトランプである。
といふ「推論」の「妥当性」を示そうとすのであれば、
Fa→~Ba
といふ「仮言命題」を、その「対偶」である所の、
Ba→~Fa
Ba→~Fa
といふ「仮言命題」に、「書き換へ」ては、ならない。
令和02年11月13日、毛利太。

0 件のコメント:

コメントを投稿