2022年7月11日月曜日

「偽→偽」は「真」である。

―「先程(令和04年07月11日)の記事」は迂遠であるため、削除します。―
(01)
(ⅰ)
1  (1) P→ Q A
 2 (2)   ~Q A
  3(3) P    A
1 3(4)    Q 13MPP
123(5) ~Q&Q 24&I
12 (6)~P    35RAA
1  (7)~Q→~P 26CP
(ⅱ)
1  (1) ~Q→~P A
 2 (2)      P A
  3(3) ~Q    A
1 3(4)    ~P 13MPP
123(5)  P&~P 24&I
12 (6)~~Q    35RAA
12 (7)  Q    6DN
1  (8)  P→ Q 27CP
従って、
(01)により、
(02)
①  P→ Q
② ~Q→~P
に於いて、
①=② は「対偶」である。
従って、
(02)により、
(03)
①  P→ Q
② ~Q→~P
に於いて、
P=(P&~P)
Q=(Q&~Q)
といふ「代入」を行ふと、
①  (P&~P)→ (Q&~Q)
② ~(Q&~Q)→~(P&~P)
に於いて、
①=② である。
従って、
(03)により、
(04)
①  (P&~P)→ (Q&~Q)
② ~(Q&~Q)→~(P&~P)
に於いて、
①=② は「対偶」である。
然るに、
(05)
①  (P&~P)は「矛盾」 であって、「矛盾」 は「偽(ウソ)」である。
② ~(P&~P)は「矛盾律」であって、「矛盾律」は「真(本当)」である。
従って、
(04)(05)により、
(06)
①  (P&~P)→ (Q&~Q)
② ~(Q&~Q)→~(P&~P)
に於いて、
①=② は「対偶」であって、
①(偽)→(偽)
②(真)→(真)
である。
然るに、
(06)により、
(07)
②(真)→(真)
だけでなく、
①(偽)→(偽)
も「真」でなければ、「対偶」は「成立しない」。
然るに、
(08)
「対偶」は「成立」する。
従って、
(07)(08)により、
(09)
①(偽)→(偽)
は「真」である。
令和04年07月11日、毛利太。

0 件のコメント:

コメントを投稿