2021年3月23日火曜日

「述語論理」は「難解である」。

 ―「昨日(令和03年03月22日)の記事」を、書き直します。―
(01)
(ⅰ)「すべての数は偶数である。」か、または「すべての数は奇数である。」然るに、
(ⅱ)「すべての数は偶数である。」ではない。従って、
(ⅲ)「すべての数は奇数である。」
といふ「推論」は、「選言三段論法(Disjunctive syllogism)」である。
従って、
(01)により、
(02)
「記号」で書くと、
(ⅰ) ∀x(Fx)∨∀x(Gx)。然るに、
(ⅱ)~∀x(Fx)。従って、
(ⅲ) ∀x(Gx)。
といふ「推論」は、「選言三段論法(Disjunctive syllogism)」である。
然るに、
(03)
演繹定理(Deduction theorem)は次のように表現される。
定理2.2 A と B は論理式で、Γ は論理式の有限の列であるとする。もし、
 Γ,A├ B
ならば、
 Γ├ A→B
である(長尾真・淵一博、論理と意味、1983年、40頁)。
従って、
(02)(03)により、
(03)
① ∀x(Fx)∨∀x(Gx), ~∀x(Fx)├ ∀x(Gx)
② ∀x(Fx)∨∀x(Gx)├ ~∀x(Fx)→ ∀x(Gx)
といふ「連式(Sequents)」に於いて、
① は、「三段論法」として「妥当」であり、
② は、「演繹定理」として「妥当」である。
然るに、
(04)
(ⅱ)
1    (1) ~∀x(Fx)→∀x(Gx) A
 2   (2) ∃x(~Fx)        A
 2   (3) ~∀x(Fx)        2量化子の関係
12   (4)         ∀x(Gx) 13MPP
1    (5) ∃x(~Fx)→∀x(Gx) 24CP
  6  (6) ∃x(~Fx&~Gx)    A
   7 (7)    ~Fa&~Ga     A
   7 (8)    ~Fa         7&E
   7 (9) ∃x(~Fx)        8EI
  6  (ア) ∃x(~Fx)        679EE
1 6  (イ)         ∀x(Gx) 5アMPP
1 6  (ウ)            Ga  イUI
   7 (エ)           ~Ga  7&E
1 67 (オ)        Ga&~Ga  ウエ&I
1 6  (カ)        Ga&~Ga  67オEE
1    (キ)~∃x(~Fx&~Gx)    6カRAA
1    (ク)∀x~(~Fx&~Gx)    キ量化子の関係
1    (ケ)  ~(~Fa&~Ga)    クUE
1    (コ)     Fa∨ Ga     ケ、ド・モルガンの法則
1    (サ)  ∀x(Fx∨ Gx)    コUI
従って、
(04)により、
(05)
③ ~∀x(Fx)→∀x(Gx)├ ∀x(Fx∨Gx)
といふ「連式(Sequent)」は、「妥当」である。
従って、
(03)(05)
(06)
②  ∀x(Fx)∨∀x(Gx)├ ~∀x(Fx)→∀x(Gx)
③ ~∀x(Fx)→∀x(Gx)├  ∀x(Fx∨Gx)
といふ「連式(Sequents)」は、「妥当」である。
従って、
(06)により、
(07)
∀x(Fx)∨∀x(Gx)├ ~∀x(Fx)→ ∀x(Gx)├ ∀x(Fx∨Gx)
といふ「連式(Sequent)」は、「妥当」であり、それ故、「推移律」により、
∀x(Fx)∨∀x(Gx)∀x(Fx∨Gx)
といふ「連式(Sequent)」は、「妥当」である。
従って、
(01)~(07)により、
(08)
(ⅰ) ∀x(Fx)∨∀x(Gx)。然るに、
(ⅱ)~∀x(Fx)。従って、
(ⅲ) ∀x(Gx)。
といふ「推論(選言三段論法)」が「妥当」である。が故に、
① ∀x(Fx)∨∀x(Gx)├ ∀x(Fx∨Gx)
といふ「連式(Sequent)」は、「妥当」である。
然るに、
(09)
① ∀x(Fx)∨∀x(Gx)├ ∀x(Fx∨Gx)
に対して、その「逆の連式」に関しては、
逆の連式、∀x(Fx∨Gx)├ ∀x(Fx)∨∀x(Gx) は妥当ではない
(E.J.レモン 著、竹尾治一郎・浅野 楢英 訳、1973年、155頁)
従って、
(09)により、
(10)
① ∀x(Fx)∨∀x(Gx)├ ∀x(Fx∨Gx)
② ∀x(Fx∨Gx)├ ∀x(Fx)∨∀x(Gx)
に於いて、
① は「妥当」であるが、
② は「妥当」ではない。
従って、
(10)により、
(11)
1  (1)∀x(偶x∨奇x)     A
1  (2)   偶a∨奇a      1UE
 3 (3)   偶         A
 3 (4)∀x(偶)        3UI
 3 (5)∀x(偶x)∨∀x(奇x) 4∨I
  6(6)      奇      A
  6(7)       ∀x(奇) 6UI
  6(8)∀x(偶x)∨∀x(奇x) 7∨I
1  (9)∀x(偶x)∨∀x(奇x) 23568∨E
といふ「計算(11)」は、実際には、「 マチガイ」である。
すなはち、
(12)
「すべての正の整数は、偶数であるか、または、奇数である」が、
「すべての正の整数が偶数であるか、または、すべての正の整数が奇数である」というわけではない。
この場合には、
この連式、∀x(Fx∨Gx)├ ∀x(Fx)∨∀x(Gx)を証明しようとする自然な試みをさしとめるのは、UIに対する制限である。
1 (1)∀x(Fx∨Gx) A
1 (2)   Fa∨Ga  1UE
 3(3)   F     A
        Fa∨Gaを(1)から結論し、そして第1の選言項 Fa を(3)の行に仮定する。しかし(3)は を含む故、ここで、
     ∀x(Fx)を結論することをさしとめられる。この段階が許されるとするならば、
     ∀x(Fx)∨∀x(Gx)を ∨I によって結論し、つぎに Ga からも同じことを結論することができるであろう。
     そして ∨E によって不当な連式が作り出されるであろう。
(E.J.レモン 著、竹尾治一郎・浅野 楢英 訳、1973年、155・156頁)
然るに、
(13)
京都大学文学部・矢田部俊介先生は、ユーチューブの中で、「UIに対する制限(eigenvariable 条件)」は、「述語論理最大の難所」であって、「これ本当にねぇ、わけわかんないですよね。僕は、初めてこれを習ったとき、見たとき、何のことか、全く理解できなかったんですよねこれ。」といふ風に、言はれてゐる。
尚且つ、
(14)
1  (1)∀x(偶x∨奇x)     A
1  (2)   偶a∨奇a      1UE
 3 (3)   偶         A
 3 (4)∀x(偶)        3UI
の場合は、「UIに対する制限(eigenvariable 条件)」は、「∨E(選言除去の規則)」との「合はせ技」なので、「猶のこと難しい」。
(15)
「E.J.レモン 著、竹尾治一郎・浅野 楢英、論理学初歩」の「書評」を見ると、「難解です。」と書かれてゐる方がゐるものの、「E.J.レモン 著、論理学初歩」は、「それなりに難解」である上に、「惜しむらく」は、「練習問題」に対する「解答」が無いことである。
令和03年03月23日、毛利太。

0 件のコメント:

コメントを投稿