―「先程(令和02年09月14日)の記事」を補足します。―
(01)
(ⅱ)兎には長い耳があるが、兎の耳は鼻ではない。従って、
(〃)兎は、鼻以外(耳)も長い。
といふ「推論」は、「妥当」である。
従って、
(01)により、
(02)
(ⅰ)象は鼻は長く、鼻以外は長くない。然るに、
(ⅱ)兎には長い耳があるが、兎の耳は鼻ではない。従って、
(ⅲ)兎は象であるとすると、「矛盾」する。
従って、
(02)により、
(03)
(ⅰ)象は鼻は長く、鼻以外は長くない。然るに、
(ⅱ)兎には長い耳があるが、兎の耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論」は、「妥当」である。
然るに、
(04)
1 (1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
2 (2)∀x{兎x→∃y(長y&耳yx)&∀z(耳zx→~鼻zx)} A
3 (3)∃x(兎x&象x) A
1 (4) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
2 (5) 兎a→∃y(長y&耳ya)&∀z(耳za→~鼻za) 2UE
6 (6) 兎a&象a A
6 (7) 兎a 6&E
6 (8) 象a 6&E
1 6 (9) ∃y(鼻ya&長y)&∀z(~鼻za→~長z) 48MPP
2 6 (ア) ∃y(長y&耳ya)&∀z(耳za→~鼻za) 57MPP
1 6 (イ) ∃y(鼻ya&長y) 9&E
ウ (ウ) 鼻ba&長b A
2 6 (エ) ∃y(長y&耳ya) ア&E
オ(オ) 長b&耳ba A
オ(カ) 耳ba オ&E
2 6 (キ) ∀z(耳za→~鼻za) ア&E
2 6 (ク) 耳ba→~鼻ba キUE
2 6 オ(ケ) ~鼻ba オクMPP
1 6 (コ) ∀z(~鼻za→~長z) ア&E
1 6 (サ) ~鼻ba→~長b コUE
12 6 オ(シ) ~長b ケサMPP
オ(ス) 長b オ&E
12 6 オ(セ) 長b&~長b シス&I
12 6 (ソ) 長b&~長b エオセEE
123 (タ) 長b&~長b 36ソEE
12 (チ)~∃x(兎x&象x) 3タRAA
12 (ツ)∀x~(兎x&象x) チ量化子の関係
12 (テ) ~(兎a&象a) ツUE
12 (ト) ~兎a∨~象a テ、ド・モルガンの法則
12 (ナ) 兎a→~象a ト含意の定義
12 (ニ)∀x(兎x→~象x) ナUI
然るに、
(05)
(ⅰ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}
(ⅱ)∀x{兎x→∃y(長y&耳yx)&∀z(耳zx→~鼻zx)}
(ⅲ)∀x(兎x→~象x)
といふ「述語論理式」は、
(ⅰ)すべてのxについて{xが象であるならば、あるyはxの鼻であって、長く、すべてのzについて、zがxの鼻でないならば、zは長くない。}
(ⅱ)すべてのxについて{xが兎であるならば、あるyは長くて、xの耳であり、すべてのzについて、zがxの耳であるならば、zはxの鼻ではない。}
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない。)
といふ「意味」である。
然るに、
(06)
(ⅰ)すべてのxについて{xが象であるならば、あるyはxの鼻であって、長く、すべてのzについて、zがxの鼻でないならば、zは長くない。}
(ⅱ)すべてのxについて{xが兎であるならば、あるyは長くて、xの耳であり、すべてのzについて、zがxの耳であるならば、zはxの鼻ではない。}
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない。)
といふことは、要するに、
(ⅰ)象は鼻は長く、鼻以外は長くない。
(ⅱ)兎には長い耳があるが、兎の耳は鼻ではない。
(ⅲ)兎は象ではない。
といふ、ことである。
従って、
(04)(05)(06)により、
(07)
(ⅰ)象は鼻は長く、鼻以外は長くない。然るに、
(ⅱ)兎には長い耳があるが、兎の耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論」は、「日本語」としても、「述語論理」としても、「妥当」である。
然るに、
(08)
(ⅰ)象は鼻は長い(が、鼻以外に、長い部分があるかどうかは、分からない)。
とするならば、
(ⅰ)象は、鼻(と耳)が長い。
としても、「矛盾」しない。
然るに、
(09)
(ⅰ)兎には長い耳があるが、兎の耳は鼻ではない。
といふのであれば、これだけでは、
(ⅱ)兎の鼻は、長いのか、長くないのか。
といふことに関しては、「不明」である。
従って、
(04)~(09)により、
(10)
(ⅰ)象は鼻は長い(が、鼻以外に、長い部分があるかどうかは、分からない)。
(ⅱ)兎には長い耳があるが、兎の耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論」は、「妥当」ではない。
然るに、
(11)
1(1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
ではなく、
1(1)∀x{象x→∃y(鼻yx&長y)} A
とするならば、
(ⅰ)象は鼻は長い。
となって、
(ⅰ)象は鼻は長い。
といふことは、
(ⅰ)象は鼻は長い(が、鼻以外に、長い部分があるかどうかは、分からない)。
といふ、ことである。
然るに、
(04)(11)により、
(12)
1 (1)∀x{象x→∃y(鼻yx&長y)} A
2(2)∀x{兎x→∃y(長y&耳yx)&∀z(耳zx→~鼻zx)} A
といふ「仮定」からは、
12(ニ)∀x(兎x→~象x) ナUI
12(〃)兎は象でない。
といふ「結論」を、得ることは、出来ない。
従って、
(10)(11)(12)により、
(13)
(ⅰ)象は鼻は長い(が、鼻以外に、長い部分があるかどうかは、分からない)。
(ⅱ)兎には長い耳があるが、兎の耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論」は、「日本語」としても、「述語論理」としても、「妥当」ではない。
従って、
(01)~(13)により、
(14)
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎には長い耳があるが、兎の耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論」が、「日本語」として、「妥当」であると、するならば、
① 象は鼻が長い。
② 象は鼻は長く、鼻以外は長くない。
に於いて、
①=② である。
といふことを、「否定」することは、出来ない。
然るに、
(15)
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎には長い耳があるが、兎の耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論」は、明らかに、「妥当」である。
従って、
(14)(15)により、
(16)
① 象は鼻が長い。
② 象は鼻は長く、鼻以外は長くない。
に於いて、
①=② である。
といふことを、「否定」することは、出来ない。
令和02年09月14日、毛利太。
0 件のコメント:
コメントを投稿