― しばらく、「返り点」に関する「記事」を書いてゐません。「返り点と括弧」に関しては、
(α)「返り点」と「括弧」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_11.html)
(β)「返り点」と「括弧」の条件。 :(https://kannbunn.blogspot.com/2017/12/blog-post_15.html)
(γ)「返り点」と「括弧」の条件(Ⅱ):(https://kannbunn.blogspot.com/2017/12/blog-post_16.html)
(δ)「返り点」は、下には戻らない。 :(https://kannbunn.blogspot.com/2017/12/blog-post_20.html)
(ε)「下中上点」等が必要な「理由」。:(https://kannbunn.blogspot.com/2017/12/blog-post_22.html)
(ζ)「返り点・モドキ」について。 :(https://kannbunn.blogspot.com/2017/12/blog-post_24.html)⇒
Web上には存在しますが、何故か、アクセス出来ません。
(η)「一二点・上下点」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_26.html)
(θ)「括弧」の「順番」。 :(https://kannbunn.blogspot.com/2018/01/blog-post.html)
(ι)「返り点」と「括弧」の関係 :(https://kannbunn.blogspot.com/2019/01/blog-post_21.html)
等々、「その他」を、お読み下さい。―
(01)
① ~(P∨Q)≡(Pであるか、Qである。)といふことはない。
② (P∨Q)≡(Pであるか、Qである。)
に於いて、
①&② は、「矛盾」そのものである。
然るに、
(02)
実際には、
① ~(P∨Q)≡Pであるか、Qである。といふことはない。
② P ≡Pである。
③ Q ≡Qである。
に於いても、
①&② は、「矛盾」するし、
①&③ も、「矛盾」する。
従って、
(02)により、
(03)
① ~(P∨Q)≡Pであるか、Qである。といふことはない。
② P ≡Pである。
③ Q ≡Qである。
に於いて、
① ならば、② ~P≡Pでない。
① ならば、③ ~Q≡Qでない。
然るに、
(04)
「選言導入(∨I)」により、
②(P≡Pである。)→(P∨Q≡Pであるか、Qである。)
③(Q≡Qである。)→(P∨Q≡Pであるか、Qである。)
然るに、
(05)
(ⅰ)
1 (1)~(P∨ Q) A
2 (2) P A
2 (3) P∨ Q 2選言導入(∨I)
12 (4)~(P∨ Q)&
(P∨ Q) 13&I
1 (5) ~P 24RAA
6(6) Q A
6(7) P∨ Q 6選言導入(∨I)
1 6(8)~(P∨ Q)&
(P∨ Q) 17&I
1 (9) ~Q 68RAA
1 (ア) ~P&~Q 59&I
従って、
(04)(05)により、
(06)
① ~(P∨Q)├ ~P&~Q
といふ「連式(sequent)」、すなはち、
① Pであるか、Qである。といふことはない。故に、Pではないし、Qでもない。
といふ「ド・モルガンの法則」は、「妥当」である。
従って、
(05)(06)により、
(07)
2 (3) P∨ Q 2選言導入(∨I)
6(7) P∨ Q 6選言導入(∨I)
がさうであるやうに、
②(P≡Pである。)→(P∨Q≡Pであるか、Qである。)
③(Q≡Qである。)→(P∨Q≡Pであるか、Qである。)
である所の、「選言導入(∨I)」を用ひなければ、例へば、
① ~(P∨Q)├ ~P&~Q
① Pであるか、Qである。といふことはない。故に、Pではないし、Qでもない。
である所の、「ド・モルガンの法則」を、「証明」することは、出来ない。
従って、
(07)
例へば、
②(P≡偶数の和は奇数である。)→
②(P∨Q≡偶数の和は奇数であるか、太陽は西から昇って東に沈む。)
といふ「選言導入の規則」を認めなければ、「ド・モルガンの法則」を「証明」することは、出来ない。
令和元年10月31日、毛利太。
0 件のコメント:
コメントを投稿