2019年10月5日土曜日

∀xFx∨∀xGx├ ∀x(Fx∨Gx)

― しばらく、「返り点」に関する「記事」を書いてゐません。「返り点と括弧」に関しては、
(α)「返り点」と「括弧」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_11.html
(β)「返り点」と「括弧」の条件。  :(https://kannbunn.blogspot.com/2017/12/blog-post_15.html
(γ)「返り点」と「括弧」の条件(Ⅱ):(https://kannbunn.blogspot.com/2017/12/blog-post_16.html
(δ)「返り点」は、下には戻らない。 :(https://kannbunn.blogspot.com/2017/12/blog-post_20.html
(ε)「下中上点」等が必要な「理由」。:(https://kannbunn.blogspot.com/2017/12/blog-post_22.html
(ζ)「返り点・モドキ」について。  :(https://kannbunn.blogspot.com/2017/12/blog-post_24.html)⇒
 Web上には存在しますが、何故か、アクセス出来ません。
(η)「一二点・上下点」に付いて。  :(https://kannbunn.blogspot.com/2017/12/blog-post_26.html
(θ)「括弧」の「順番」。      :(https://kannbunn.blogspot.com/2018/01/blog-post.html
(ι)「返り点」と「括弧」の関係   :(https://kannbunn.blogspot.com/2019/01/blog-post_21.html
等々、「その他」を、お読み下さい。―
(01)
「&(の働き)」と「∨(の働き)」を理解してゐれば、
① (Fa&Fb&Fc)∨(Ga&Gb&Gc)
②(Fa∨Ga)&(Fb∨Gb)&(Fc∨Gc)
に於いて、
① ならば、② であるが、
② ならば、① であるとは、限らない
といふことは、「容易理解」出来る。
然るに、
(02)
存在量記号選言の仲間であり、普遍量記号連言の仲間である(E.J.レモン、論理学初歩)。」といふことから、
① (Fa&Fb&Fc)∨(Ga&Gb&Gc)
②(Fa∨Ga)&(Fb∨Gb)&(Fc∨Gc)
といふ「事態」は、{a,b,c}が「ドメイン(変域)」であるとして、
① ∀xFx∨∀xGx
② ∀x(Fx∨Gx)
といふ「論理式」に相当する。
従って、
(01)(02)により、
(03)
① ∀xFx∨∀xGx
② ∀x(Fx∨Gx)
に於いて、
① ならば、② であるが、
② ならば、① ではない
然るに、
(04)
(ⅰ)
1  (1) ∀xFx∨∀xGx A
 2 (2) ∀xFx      A
 2 (3)   Fa      2UE
 2 (4)   Fa∨Ga   3∨I
 2 (5)∀x(Fx∨Gx)  4UI
  6(6)      ∀xGx A 
  6(7)        Ga 6UE
  6(8)   Fa∨Ga   7∨I
  6(9)∀x(Fx∨Gx)  8UI
1  (ア)∀x(Fx∨Gx)  12569∨E
従って、
(03)(04)により、
(05) 
確かに、
① ∀xFx∨∀xGx
② ∀x(Fx∨Gx)
に於いて、
① ならば、② である。
然るに、
(06)
(ⅱ)
1 (1)∀x(Fx∨Gx)  A
1 (2)   Fa∨Ga   1UE
 (3)   F      A
 3(4) ∀xFx      UI
然るに、
(07)
しかし(3)は「」を含む故、ここで∀xFxを結論することはさしとめられる
(論理学初歩、E.J.レモン著、竹尾治一郎・浅野楢英 訳、1973年、156)
(08)
1 (2)   Fa∨Ga   1UE
 (3)   F      A
 3(4) ∀xFx      UI
といふことは、
  (2)aはFであるか、aはGである。
  (3)仮に、aFであるとする。従って、
  (4)aはFであり、bFであり、cFである。
と言ってゐるのに「等しい」ため、当然、「マチガイ」である。
従って、
(06)(07)(08)により、
(09)
(ⅱ)
1  (1) ∀x(Fx∨Gx) A
1  (2)    Fa∨Ga  1UE
 3 (3)    Fa     A
 3 (4)  ∀xFx     3UI
に続く、
 3 (5)∀xFx∨∀xGx  4∨I
  6(6)       Ga  A
  6(7)     ∀xGx  6UI
  6(8)∀xFx∨∀xGx  7∨I
1  (9)∀xFx∨∀xGx  23568∨E 
といふ「計算」も、「妥当」ではない
従って、
(06)~(09)により、
(10)
確かに、
① ∀xFx∨∀xGx
② ∀x(Fx∨Gx)
に於いて、
② ならば、① ではない
従って、
(03)(05)(09)により、
(10)
確かに、
① ∀xFx∨∀xGx
② ∀x(Fx∨Gx)
に於いて、
① ならば、② であるが、
② ならば、① ではない。
(11)
「&(の働き)」と「∨(の働き)」を理解してゐれば、
① (Fa&Fb&Fc)∨(Ga&Gb&Gc)
②(Fa∨Ga)&(Fb∨Gb)&(Fc∨Gc)
に於いて、
① ならば、② であるが、
② ならば、① であるとは、限らない。
といふことは、「容易理解」できる。といふ際に、
「どのやうに、容易に理解できる」のかと言ふと、「結局」は、
(ⅰ)
1  (1) ∀xFx∨∀xGx A
 2 (2) ∀xFx      A
 2 (3)   Fa      2UE
 2 (4)   Fa∨Ga   3∨I
 2 (5)∀x(Fx∨Gx)  4UI
  6(6)      ∀xGx A 
  6(7)        Ga 6UE
  6(8)   Fa∨Ga   7UI
  6(9)∀x(Fx∨Gx)  8UI
1  (ア)∀x(Fx∨Gx)  12569∨E
(ⅱ)
1  (1) ∀x(Fx∨Gx) A
1  (2)    Fa∨Ga  1UE
 3 (3)    Fa     A
 3 (4)  ∀xFx     3UI
といふ「計算」と、「同じ思考の過程を辿る」ことによって、「容易理解できる」。
令和元年10月05日、毛利太。

0 件のコメント:

コメントを投稿