2019年10月4日金曜日

∃x(Fx&Gx)├ ∃xFx&∃xGx

― しばらく、「返り点」に関する「記事」を書いてゐません。「返り点と括弧」に関しては、
(α)「返り点」と「括弧」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_11.html
(β)「返り点」と「括弧」の条件。  :(https://kannbunn.blogspot.com/2017/12/blog-post_15.html
(γ)「返り点」と「括弧」の条件(Ⅱ):(https://kannbunn.blogspot.com/2017/12/blog-post_16.html
(δ)「返り点」は、下には戻らない。 :(https://kannbunn.blogspot.com/2017/12/blog-post_20.html
(ε)「下中上点」等が必要な「理由」。:(https://kannbunn.blogspot.com/2017/12/blog-post_22.html
(ζ)「返り点・モドキ」について。  :(https://kannbunn.blogspot.com/2017/12/blog-post_24.html)⇒
 Web上には存在しますが、何故か、アクセス出来ません。
(η)「一二点・上下点」に付いて。  :(https://kannbunn.blogspot.com/2017/12/blog-post_26.html
(θ)「括弧」の「順番」。      :(https://kannbunn.blogspot.com/2018/01/blog-post.html
(ι)「返り点」と「括弧」の関係   :(https://kannbunn.blogspot.com/2019/01/blog-post_21.html
等々、「その他」を、お読み下さい。―
(01)
①「男子の学生がゐる。」ならば、
②「男子がゐて、学生がゐる。」
然るに、
(02)
②「男子がゐて、学生がゐる。」としても、
①「男子の学生がゐる。」とは、限らない。
従って、
(01)(02)により、
(03)
①「男子の学生がゐる。」
②「男子がゐて、学生がゐる。」
に於いて、
① ならば、② であるが、
② ならば、① であるとは、限らない。
然るに、
(04)
存在量記号選言の仲間であり、普遍量記号連言の仲間である(E.J.レモン、論理学初歩)。」といふことから、
{a,b,c}の{三人}が「ドメイン(変域)」であるならば、
①「男子の学生がゐる。」
②「男子がゐて、学生がゐる。」
は、それぞれ、
①(男子a&学生a)∨(男子b&学生b)∨(男子c&学生c)
②(男子a∨男子b∨男子c)&(学生a∨学生b∨学生c)
といふ「事態」に、相当する。
然るに、
(05)
{a,b,c}の{三人}が「ドメイン(変域)」であるならば、
①(男子a&学生a)∨(男子b&学生b)∨(男子c&学生c)
②(男子a∨男子b∨男子c)&(学生a∨学生b∨学生c)
といふ「事態」は、
① ∃x(男子x&学生x)
② ∃x男子x&∃x学生x
といふ「式」で、表すことが、出来る。
従って、
(01)~(05)により、
(06)
①「男子の学生がゐる。」
②「男子がゐて、学生がゐる。」
といふ「日本語」は、
① ∃x(男子x&学生x)
② ∃x男子x&∃x学生x
といふ「式」に、相当し、それ故に、
① ∃x(男子x&学生x)
② ∃x男子x&∃x学生x
に於いて、
① ならば、② であるが、
② ならば、① であるとは、限らない。
従って、
(06)により、
(07)
(ⅰ)
1 (1)∃x(男子x&学生x)     A
1 (〃)男子の学生がゐる。       A
 2(2)   男子a&学生a      A
 2(3)   男子a          2&E
 2(4)∃x(男子x)         3EI
 2(5)       学生a      2&E
 2(6)    ∃x(学生x)     5EI
 2(7)∃x(男子x)&∃x(学生x) 46&I
1 (8)∃x(男子x)&∃x(学生x) 127EE
といふ「計算」は、「妥当」であるが、
(ⅱ)
1   (1)∃x(男子x)     A
1   (〃)あるxは男子である。  A
 2  (2)∃x(学生x)     A
 2  (〃)あるxは学生である。  A
   ()   男子      A
   )   学生      A
  34(5)   男子a&学生a  34&I
  34(6)∃x(男子x&学生x) 5EI
 23 (7)∃x(男子x&学生x) 24EE
12  (8)∃x(男子x&学生x) 13EE
12  (〃)男子の学生がゐる。   13EE
といふ「計算」は、「妥当」ではない
(08)
「&(の働き)」と「∨(の働き)」と「真理表」を理解してゐれば、
①(男子a&学生a)∨(男子b&学生b)∨(男子c&学生c)
②(男子a∨男子b∨男子c)&(学生a∨学生b∨学生c)
に於いて、
① ならば、② であるが、
② ならば、① であるとは、限らない。
といふことは、「容易に理解」出来る。
令和元年10月04日、毛利太。

0 件のコメント:

コメントを投稿