― しばらく、「返り点」に関する「記事」を書いてゐません。「返り点と括弧」に関しては、
(α)「返り点」と「括弧」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_11.html)
(β)「返り点」と「括弧」の条件。 :(https://kannbunn.blogspot.com/2017/12/blog-post_15.html)
(γ)「返り点」と「括弧」の条件(Ⅱ):(https://kannbunn.blogspot.com/2017/12/blog-post_16.html)
(δ)「返り点」は、下には戻らない。 :(https://kannbunn.blogspot.com/2017/12/blog-post_20.html)
(ε)「下中上点」等が必要な「理由」。:(https://kannbunn.blogspot.com/2017/12/blog-post_22.html)
(ζ)「返り点・モドキ」について。 :(https://kannbunn.blogspot.com/2017/12/blog-post_24.html)⇒
Web上には存在しますが、何故か、アクセス出来ません。
(η)「一二点・上下点」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_26.html)
(θ)「括弧」の「順番」。 :(https://kannbunn.blogspot.com/2018/01/blog-post.html)
(ι)「返り点」と「括弧」の関係 :(https://kannbunn.blogspot.com/2019/01/blog-post_21.html)
等々、「その他」を、お読み下さい。―
(01)
① 象は鼻が長い。然るに、
② 兎は耳が長く、兎の耳は鼻ではない。従って、
③ 兎は象ではない。
といふ「推論」は、「妥当」である。
然るに、
(02)
① Aは鼻以外は長くない。
② Bは耳以外は長くない。
とするならば、
① Aの鼻は長く、
② Bの鼻は長くない。
といふことになり、そのため、
③ AとBは、「同じ対象」では、有り得ない。
従って、
(01)(02)により、
(03)
① 象は鼻が長い。然るに、
② 兎は耳が長く、兎の耳は鼻ではない。従って、
③ 兎は象ではない。
といふ「推論」は、その実、
① 象は鼻以外は長くない。然るに、
② 兎は耳以外は長くなく、兎の耳は鼻ではない。従って、
③ 兎は象ではない。
といふ「推論」に、「等しい」。
然るに、
(04)
① 象は鼻は長く、鼻以外は長くない。
② 兎は耳は長く、耳以外は長くなく、兎の耳は鼻ではない。
といふ「日本語」は。
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}
② ∀x{兎x→∃y(耳yx&長y)&∀z(~耳zx→~長z&耳zx→~鼻zx)}
といふ「論理式」に、相当する。
然るに、
(05)
1 (1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
2 (2)∀x{兎x→∃y(耳yx&長y)&∀z(~耳zx→~長z&耳zx→~鼻zx)} A
3 (3)∃x(象x&兎x) A
1 (4) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
2 (5) 兎a→∃y(耳ya&長y)&∀z(~耳za→~長z&耳za→~鼻za) 2UE
6 (6) 象a&兎a A
6 (7) 兎a 6&E
6 (8) 兎a 6&E
1 6 (9) ∃y(鼻ya&長y)&∀z(~鼻za→~長z) 47MPP
2 6 (ア) ∃y(耳ya&長y)&∀z(~耳za→~長z&耳za→~鼻za) 58MPP
1 6 (イ) ∃y(鼻ya&長y) 9&E
ウ (ウ) 鼻ba&長b A
1 6 (エ) ∀z(~鼻za→~長z) 9&E
1 6 (オ) ~鼻ba→~長b エUE
2 6 (カ) ∃y(耳ya&長y) ア&E
キ(キ) 耳ba&長b A
2 6 (ク) ∀z(~耳za→~長z&耳za→~鼻za) ア&E
2 6 (ケ) ~耳ba→~長b&耳ba→~鼻ba クUE
2 6 (コ) 耳ba→~鼻ba ケ&E
キ(サ) 耳ba キ&E
2 6 キ(シ) ~鼻ba コサMPP
12 6 キ(ス) ~長b オシMPP
ウ (セ) 長b ウ&E
12 6ウキ(ソ) 長b&~長b シス&I
12 6ウ (タ) 長b&~長b カキソEE
12 6 (チ) 長b&~長b イウタEE
123 (ツ) 長b&~長b 36チEE
12 (テ)~∃x(象x&兎x) 3ツRAA
12 (ト)∀x~(象x&兎x) テ量化子の関係
12 (ナ) ~(象a&兎a) トUE
12 (ニ) ~象a∨~兎a ナ、ド・モルガンの法則
12 (ヌ) ~兎a∨~象a ニ交換法則
12 (ネ) 兎a→~象a ヌ含意の定義
12 (ノ)∀x(兎x→~象x) ネUI
12 (〃)すべてのxについて、xが兎であるならば、xは象ではない。 ネUI
12 (〃)兎は象ではない。 ネUI
従って、
(04)(05)により、
(06)
① 象は鼻は長く、鼻以外は長くない。然るに、
② 兎は耳は長く、耳以外は長くなく、兎の耳は鼻ではない。従って、
③ 兎は象ではない。
といふ「推論」は、
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。然るに、
② ∀x{兎x→∃y(耳yx&長y)&∀z(~耳zx→~長z&耳zx→~鼻zx)}。従って、
③ ∀x(兎x→~象x)。
といふ「述語論理」としても、「妥当」である。
従って、
(03)(06)により、
(07)
① 象は鼻が長い。⇔
① 象は鼻は長く、鼻以外は長くない。⇔
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}⇔
① すべてのxについて、xが象であるならば、あるyはxの鼻であって長く、すべてのzについて、zがxの鼻でないならば、zは長くない。
といふ「等式」が、成立する。
従って、
(06)(07)により、
(08)
① 象は鼻が長い。然るに、
② 兎は耳が長く、兎の耳は鼻ではない。従って、
③ 兎は象ではない。
といふ「推論」は、「妥当」であるとする一方で、
① 象は鼻が長い。⇔
① 象は鼻は長く、鼻以外は長くない。⇔
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}⇔
① すべてのxについて、xが象であるならば、あるyはxの鼻であって長く、すべてのzについて、zがxの鼻でないならば、zは長くない。
といふ「等式」を、「否定」することは、出来ない。
然るに、
(09)
① 象は鼻が長い。然るに、
② 兎は耳が長く、兎の耳は鼻ではない。従って、
③ 兎は象ではない。
といふ「推論」は、明らかに、「妥当」である。
従って、
(08)(09)により、
(10)
① 象は鼻が長い。
② 兎は耳が長く、兎の耳は鼻ではない。従って、
③ 兎は象ではない。
といふ「推論」が「妥当」である以上、三上章先生であらうと、金谷武洋先生であらうと、田中智恵子先生であらうと、誰であらうと、
① 象は鼻が長い。⇔
① 象は鼻は長く、鼻以外は長くない。⇔
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}⇔
① すべてのxについて、xが象であるならば、あるyはxの鼻であって長く、すべてのzについて、zがxの鼻でないならば、zは長くない。
といふ「等式」を、「否定」することは、出来ない。
従って、
(10)により、
(11)
① 象は鼻が長い。
といふ「日本語」の「第一の、意味」は、「述語論理」で書けば、
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
といふ「意味」、すなはち、
① 象は鼻は長く、鼻以外は長くない。
といふ、「意味」である。
然るに、
(12)
「三上章、象は鼻が長い、1960年」
「三上章、日本語の論理、1963年」
「竹林一志、主語・題目語をめぐる三上章の論」等を読む限り、三上章先生は、
① 象は鼻が長い。⇔
① 象は鼻は長く、鼻以外は長くない。
といふ「等式」に、気付いてゐないか、気付いてはゐても、そのことを、無視してゐると、言はざるを得ない。
令和元年12月01日、毛利太。
0 件のコメント:
コメントを投稿