―「昨日(令和02年08月29日)の記事」を書き直します。―
(01)
(a)
1 (1) A→ B A
2 (2) A A
3(3) ~B A
12 (4) B 12MPP
123(5) ~B&B 34&I
1 3(6)~A 25RAA
1 (7)~B→~A 36CP
(b)
1 (1) ~B→~A A
2 (2) ~B A
3(3) A A
12 (4) ~A 12MPP
123(5) A&~A 34&I
1 3(6)~~B 25RAA
1 3(7) B 6DN
1 (8) A→ B 37CP
従って、
(01)により、
(02)
(a) A→ B
(b)~B→~A
に於いて、
(a)=(b)
であって、それ故、「対偶(Contrapositions)」は、「互いに、等しい」。
従って、
(02)により、
(03)
(a)「Aであるならば、Bである( A→ B)。」
(b)「Bでないならば、Aでない(~B→~A)。」
に於いて、
(a)=(b)
であって、それ故、「対偶(Contrapositions)」は、「互いに、等しい」。
然るに、
(04)
(a)「Aであるならば、Bである( A→ B)。」
(b)「Bでないならば、Aでない(~B→~A)。」
に於いて、
(a)=(b)
である。といふことは、
(c)「(Bでないならば、Aでない、が故に、)Aであるためには、Bでなければ、ならない。」
(d)「(Aであるならば、Bである、が故に、)Bでないためには、Aであっては、ならない。」
といふことを、「意味」してゐる。
従って、
(04)により、
(05)
(a)「Aであるならば、Bである( A→ B)。」
(b)「Bでないならば、Aでない(~B→~A)。」
に於いて、
(a)=(b)
であるが故に、
(c)「Aであるためには、Bであること」が、「必要」である。
(d)「Bでないためには、Aでないこと」が、「必要」である。
従って、
(05)により、
(06)
(a)「Aであるならば、Bである( A→ B)。」
(b)「Bでないならば、Aでない(~B→~A)。」
に於いて、
(a)=(b)
であるが故に、
(c)「Bであることは、Aであるため」の、「必要条件」である。
(d)「Aでないことは、Bでないため」の、「必要条件」である。
然るに、
(07)
(ⅰ)
① 不有祝鮀之佞、而有宋朝之美、難乎、免於今之世矣=
① 不〔有(祝鮀之佞)〕、而有(宋朝之美)、難乎、免(於今之世)矣⇒
① 〔(祝鮀之佞)有〕不、而(宋朝之美)有、難乎、(於今之世)免矣=
① 〔(祝鮀の佞)有ら〕ずして、而も(宋朝の美)有らば、難いかな、(今に世に)免るること=
① 〔(祝鮀のやうな弁舌が)有る〕のではなく、而も(宋朝のやうな美貌が)有るだけならば、難しいことだよ、(今の時世を)無事に送ることは。
(ⅱ)
② 不有祝鮀之佞、而有宋朝之美、難乎、免於今之世矣=
② 不〔有(祝鮀之佞)、而有(宋朝之美)〕、難乎、免(於今之世)矣⇒
② 〔(祝鮀之佞)有、而(宋朝之美)有〕不、難乎、(於今之世)免矣=
② 〔(祝鮀の佞)有りて、而も(宋朝の美)有ら〕ずんば、難いかな、(今の世矣)免るること=
② 〔(祝鮀のやうな弁舌が)有って、而も(宋朝のやうな美貌が)有る〕といふ、ことではないならば、難しいことだよ、(今の時世を)無事に送ることは。
然るに、
(08)
① の場合、-a+bであると訳すと「弁舌はなくて、ハンサムというのは、あぶない(ハンサムの上に弁舌を兼ねそなえてこそ、はじめてやってゆける)」ということになる。
② の場合、すなわち -(a+b)であると「弁舌があり、その上にハンサムでないかぎり、やってゆけない」ということになる。どちらが正しいか。
実はどちらも意味が通じるのである。
① のほうは、古注といって、伝統的な解釈であるが、
② のほうは、新注といって、朱熹(朱子)の解釈なのである。
(二畳庵主人、漢文法基礎、1984年10月、325・326頁)
従って、
(07)(08)により、
(09)
① 不〔有(祝鮀之佞)〕、而有(宋朝之美)、難乎、免(於今之世)矣。
② 不〔有(祝鮀之佞)、而有(宋朝之美)〕、難乎、免(於今之世)矣。
に於いて、
① は「古注」であって、
② は「新注」である。
従って、
(09)により、
(10)
A=祝鮀のやうな弁舌が有る。
B=宋朝のやうな美貌が有る。
C=今の時世を無事に送ることは、難しい。
とするならば、
① ~A&B →C
② ~(A&B)→C
といふ「論理式」は、
① 不〔有(祝鮀之佞)〕、而有(宋朝之美)、難乎、免(於今之世)矣。
② 不〔有(祝鮀之佞)、而有(宋朝之美)〕、難乎、免(於今之世)矣。
といふ「漢文」に「等しい」。
然るに、
(10)により、
(11)
① ~A&B→C
の「対偶」は、
① ~C→~(~A&B)
である。
然るに、
(12)
(ⅰ)
1 (1)~C→~(~A&B) A
2 (2)~C A
12 (3) ~(~A&B) 12MPP
12 (4) A∨~B 3ド・モルガンの法則
12 (5) ~B∨A 4交換法則
12 (6) B→A 5含意の定義
1 (7)~C→ (B→A) 26CP
3(8)~C&B A
3(9)~C 8&E
1 3(ア) B→A 79MPP
3(イ) B 8&I
1 3(ウ) A アイMPP
1 (エ)~C&B→A 3ウCP
(〃)
1 (1)~C&B→A 3ウCP
2 (2)~C A
3(3) B A
23(4)~C&B 23&I
123(5) A 14MPP
12 (6) B→A 35CP
12 (7) ~B∨A 6含意の定義
12 (8) A∨~B 7交換法則
12 (9)~(~A&B) 8ド・モルガンの法則
1 (ア)~C→~(~A&B) 29CP
従って、
(11)(12)により、
(13)
① ~A&B→C
の「対偶」である、
① ~C→~(~A&B)
といふ「論理式」は、
① ~C&B→A
といふ「論理式」に「等しい」。
然るに、
(14)
② ~(A&B)→C
の「対偶」は、
② ~C→~~(A&B)
といふ「論理式」であるが、
② ~C→~~(A&B)
といふ「論理式」は、「二重否定律(DN)」により、
② ~C→A&B
といふ「論理式」に、「等しい」。
従って、
(03)(13)(14)により、
(15)
① ~A&B→ C
② ~(A&B)→C
といふ「論理式」は、それぞれ、
① ~C&B→A
② ~C→A&B
といふ「論理式」に、「等しい」。
従って、
(06)(10)(15)により、
(16)
① ~C&B→A
② ~C→A&B
に於いて、それぞれ、
①「今の時世で無事でゐることを易しくし、美貌があること」の「必要条件」は、「弁舌があること」である。
②「今の時世で無事でゐることを易しくすること」の「必要条件」は、「弁舌があることと、美貌があること」である。
従って、
(10)(16)により、
(17)
① 不〔有(祝鮀之佞)〕、而有(宋朝之美)、難乎、免(於今之世)矣。
② 不〔有(祝鮀之佞)、而有(宋朝之美)〕、難乎、免(於今之世)矣。
といふ「漢文」は、それぞれ、
①「(既に、美貌を備てゐる)宋朝が、今の時世で無事でゐることを易しくしたい」と思ふのであれば、「宋朝は、(祝鮀のやうな)弁舌を身に着ける、必要が有る。」
②「今の時世で無事でゐることを易しくしたいと、ある人が」思ふのであれば、「そのひとは、(祝鮀のやうな)弁舌と、(宋朝のような)美貌の、両方を、必用とする。」
といふ「意味」である。
従って、
(16)(17)により、
(18)
① 不〔有(祝鮀之佞)〕、而有(宋朝之美)、難乎、免(於今之世)矣。
② 不〔有(祝鮀之佞)、而有(宋朝之美)〕、難乎、免(於今之世)矣。
といふ「漢文」は、両方とも、「結論」としては、
①「弁舌も、美貌も、必要である。」
②「弁舌も、美貌も、必要である。」
といふ風に、述べてゐる。
令和02年08月29日、毛利太。
2020年8月30日日曜日
2020年8月28日金曜日
「二畳庵主人(加地伸行 先生)の論理」と「私の論理」は、「同じ」ではない(?)。
(01)
(ⅰ)
1 (1) ~( A& B) A
2 (2) ~(~A∨~B) A
3 (3) ~A A
3 (4) ~A∨~B 3∨I
23 (5) ~(~A∨~B)&
(~A∨~B) 24&I
2 (6) ~~A 35RAA
2 (7) A 6DN
8(8) ~B A
8(9) ~A∨~B 8∨I
2 8(ア) ~(~A∨~B)&
(~A∨~B) 29&I
2 (イ) ~~B 8アRAA
2 (ウ) B イDN
2 (エ) A& B 7ウ&I
12 (オ) ~( A& B)&
( A& B) 1エ&I
1 (カ)~~(~A∨~B) 2オRAA
1 (キ) ~A∨~B カDN
(ⅱ)
1 (1) ~( A& B) A
2 (2) ~(~A∨~B) A
3 (3) ~A A
3 (4) ~A∨~B 3∨I
23 (5) ~(~A∨~B)&
(~A∨~B) 24&I
2 (6) ~~A 35RAA
2 (7) A 6DN
8(8) ~B A
8(9) ~A∨~B 8∨I
2 8(ア) ~(~A∨~B)&
(~A∨~B) 29&I
2 (イ) ~~B 8アRAA
2 (ウ) B イDN
2 (エ) A& B 7ウ&I
12 (オ) ~( A& B)&
( A& B) 1エ&I
2 (カ)~~( A& B) 1オRAA
2 (キ) A& B カDN
従って、
(01)により、
(02)
① ~( A& B)
② ~A∨~B
に於いて、
①=② である(ド・モルガンの法則)。
然るに、
(03)
(ⅰ)
1 (1) ~(A& B)→C A
2 (2) ~A A
2 (3) ~A∨~B 2∨I
2 (4) ~(A& B) 3ド・モルガンの法則
12 (5) C 14MPP
(ⅱ)
1 (1) ~(A& B)→C A
2 (2) ~B A
2 (3) ~A∨~B 2∨I
2 (4) ~(A& B) 3ド・モルガンの法則
12 (5) C 14MPP
(ⅲ)
1 (1) ~(A& B)→C A
2 (2) ~A&~B A
2 (3) ~A 2&E
2 (4) ~A∨~B 3∨I
2 (5) ~(A& B) 4ド・モルガンの法則
12 (6) C 15MPP
従って、
(03)により、
(04)
① ~(A&B)→C,~A ├ C
② ~(A&B)→C, ~B├ C
③ ~(A&B)→C,~A&~B├ C
といふ「連式(Sequents)」は、「3つ」とも「妥当」である。
然るに、
(05)
① ~(A&B)⇔C は、
① {~(A&B)→C}&{C→~(A&B} に、「等しい」。
従って、
(05)により、
(06)
① ~(A&B)⇔C
といふ「論理式(双条件法)」は、
① ~(A&B)→C
といふ「論理式(条件法)」を「含んでゐる」。
従って、
(04)(05)(06)により、
(07)
① ~(A&B)⇔C,~A ├ C
② ~(A&B)⇔C, ~B├ C
③ ~(A&B)⇔C,~A&~B├ C
といふ「連式(Sequents)」は、「3つ」とも「妥当」である。
然るに、
(08)
(ⅳ)
1 (1) ~(A&B)⇔C A
1 (2){~(A&B)→C}&{C→~(A&B} 1Df.⇔
1 (3) C→~(A&B) 2&E
2(4) A&B A
2(5) ~~(A&B) 4DN
12(6) ~C 35MTT
従って、
(08)により、
(09)
④ ~(A&B)→C, A& B├ ~C
といふ「連式(Sequent)」は、「妥当」である。
従って、
(07)(09)により、
(10)
① ~(A&B)⇔C,~A ├ C
② ~(A&B)⇔C, ~B├ C
③ ~(A&B)⇔C,~A&~B├ C
④ ~(A&B)⇔C, A& B├ ~C
といふ「連式(Sequents)」は、「4つ」とも「妥当」である。
従って、
(10)により、
(11)
①「(Aであって、Bである)といふことでないならば、そのときに限って、Cである。」として、「Aでない。 」のであれば、Cである。
②「(Aであって、Bである)といふことでないならば、そのときに限って、Cである。」として、「 Bでない。」のであれば、Cである。
③「(Aであって、Bである)といふことでないならば、そのときに限って、Cである。」として、「Aでなくて、Bでない。」のであれば、Cである。
④「(Aであって、Bである)といふことでないならば、そのときに限って、Cである。」として、「Aであって、Bである。」のであれば、Cではない。
といふ「推論」は、「4つ」とも「正しい」。
然るに、
(12)
A=弁舌がある。
B=ハンサムである。
C=やってゆけない。
従って、
(11)(12)により、
(13)
①「(弁舌があって、ハンサムである)といふことでないならば、そのときに限って、やってゆけない。」として、「弁舌がない。 」のであれば、やってゆけない。
②「(弁舌があって、ハンサムである)といふことでないならば、そのときに限って、やってゆけない。」として、「 ハンサムでない。」のであれば、やってゆけない。
③「(弁舌があって、ハンサムである)といふことでないならば、そのときに限って、やってゆけない。」として、「弁舌がなくて、ハンサムでない。」のであれば、やってゆけない。
④「(弁舌があって、ハンサムである)といふことでないならば、そのときに限って、やってゆけない。」として、「弁舌があって、ハンサムである。」のであれば、はじめて、やってゆける。
然るに、
(14)
そこで話をもとにもどしてみる。
① の場合、-a+bであると訳すと「弁舌はなくて、ハンサムというのは、あぶない(ハンサムの上に弁舌を兼ねそなえてこそ、はじめてやってゆける)」ということになる。
② の場合、すなわち -(a+b)であると「弁舌があり、その上にハンサムでないかぎり、やってゆけない」ということになる。
(二畳庵主人、漢文法基礎、1984年10月、325頁)
然るに、
(15)
「二畳庵主人(加地伸行 先生)」が言ふ所の、
① -a+b
② -(a+b)
といふのは、
① ~A&B
② ~(A&B)
といふ「論理式」のことを、言ふ。
従って、
(10)~(15)により、
(16)
「二畳庵主人(加地伸行 先生)」は、
④ ~A&B⇔C,A&B├ ~C
といふ「連式」が「妥当」であると、述べてゐて、
「私の場合」は、
④ ~(A&B)⇔C,A&B├ ~C
といふ「連式」こそが「妥当」であると、言ってゐる。
然るに、
(17)
(ⅳ)
1 (1) ~A&B⇔C A
1 (2){~A&B→C}&{C→~A&B} 1Df.⇔
1 (3) C→~A&B 2&E
4(4) A&B A
4(5) ~~(A&B) 4DN
14(6) ~C 24MTT
といふ「計算(?)」は。もちろん、「マチガイ」である。
従って、
(16)(17)により、
(18)
「二畳庵主人(加地伸行 先生)」は、
④ ~A&B⇔C,A&B├ ~C
といふ「連式」が「妥当」であると、述べてゐるが、
④ ~A&B⇔C,A&B├ ~C
といふ「連式」は、実際には、「妥当」ではない。
令和02年08月28日、毛利太。
(ⅰ)
1 (1) ~( A& B) A
2 (2) ~(~A∨~B) A
3 (3) ~A A
3 (4) ~A∨~B 3∨I
23 (5) ~(~A∨~B)&
(~A∨~B) 24&I
2 (6) ~~A 35RAA
2 (7) A 6DN
8(8) ~B A
8(9) ~A∨~B 8∨I
2 8(ア) ~(~A∨~B)&
(~A∨~B) 29&I
2 (イ) ~~B 8アRAA
2 (ウ) B イDN
2 (エ) A& B 7ウ&I
12 (オ) ~( A& B)&
( A& B) 1エ&I
1 (カ)~~(~A∨~B) 2オRAA
1 (キ) ~A∨~B カDN
(ⅱ)
1 (1) ~( A& B) A
2 (2) ~(~A∨~B) A
3 (3) ~A A
3 (4) ~A∨~B 3∨I
23 (5) ~(~A∨~B)&
(~A∨~B) 24&I
2 (6) ~~A 35RAA
2 (7) A 6DN
8(8) ~B A
8(9) ~A∨~B 8∨I
2 8(ア) ~(~A∨~B)&
(~A∨~B) 29&I
2 (イ) ~~B 8アRAA
2 (ウ) B イDN
2 (エ) A& B 7ウ&I
12 (オ) ~( A& B)&
( A& B) 1エ&I
2 (カ)~~( A& B) 1オRAA
2 (キ) A& B カDN
従って、
(01)により、
(02)
① ~( A& B)
② ~A∨~B
に於いて、
①=② である(ド・モルガンの法則)。
然るに、
(03)
(ⅰ)
1 (1) ~(A& B)→C A
2 (2) ~A A
2 (3) ~A∨~B 2∨I
2 (4) ~(A& B) 3ド・モルガンの法則
12 (5) C 14MPP
(ⅱ)
1 (1) ~(A& B)→C A
2 (2) ~B A
2 (3) ~A∨~B 2∨I
2 (4) ~(A& B) 3ド・モルガンの法則
12 (5) C 14MPP
(ⅲ)
1 (1) ~(A& B)→C A
2 (2) ~A&~B A
2 (3) ~A 2&E
2 (4) ~A∨~B 3∨I
2 (5) ~(A& B) 4ド・モルガンの法則
12 (6) C 15MPP
従って、
(03)により、
(04)
① ~(A&B)→C,~A ├ C
② ~(A&B)→C, ~B├ C
③ ~(A&B)→C,~A&~B├ C
といふ「連式(Sequents)」は、「3つ」とも「妥当」である。
然るに、
(05)
① ~(A&B)⇔C は、
① {~(A&B)→C}&{C→~(A&B} に、「等しい」。
従って、
(05)により、
(06)
① ~(A&B)⇔C
といふ「論理式(双条件法)」は、
① ~(A&B)→C
といふ「論理式(条件法)」を「含んでゐる」。
従って、
(04)(05)(06)により、
(07)
① ~(A&B)⇔C,~A ├ C
② ~(A&B)⇔C, ~B├ C
③ ~(A&B)⇔C,~A&~B├ C
といふ「連式(Sequents)」は、「3つ」とも「妥当」である。
然るに、
(08)
(ⅳ)
1 (1) ~(A&B)⇔C A
1 (2){~(A&B)→C}&{C→~(A&B} 1Df.⇔
1 (3) C→~(A&B) 2&E
2(4) A&B A
2(5) ~~(A&B) 4DN
12(6) ~C 35MTT
従って、
(08)により、
(09)
④ ~(A&B)→C, A& B├ ~C
といふ「連式(Sequent)」は、「妥当」である。
従って、
(07)(09)により、
(10)
① ~(A&B)⇔C,~A ├ C
② ~(A&B)⇔C, ~B├ C
③ ~(A&B)⇔C,~A&~B├ C
④ ~(A&B)⇔C, A& B├ ~C
といふ「連式(Sequents)」は、「4つ」とも「妥当」である。
従って、
(10)により、
(11)
①「(Aであって、Bである)といふことでないならば、そのときに限って、Cである。」として、「Aでない。 」のであれば、Cである。
②「(Aであって、Bである)といふことでないならば、そのときに限って、Cである。」として、「 Bでない。」のであれば、Cである。
③「(Aであって、Bである)といふことでないならば、そのときに限って、Cである。」として、「Aでなくて、Bでない。」のであれば、Cである。
④「(Aであって、Bである)といふことでないならば、そのときに限って、Cである。」として、「Aであって、Bである。」のであれば、Cではない。
といふ「推論」は、「4つ」とも「正しい」。
然るに、
(12)
A=弁舌がある。
B=ハンサムである。
C=やってゆけない。
従って、
(11)(12)により、
(13)
①「(弁舌があって、ハンサムである)といふことでないならば、そのときに限って、やってゆけない。」として、「弁舌がない。 」のであれば、やってゆけない。
②「(弁舌があって、ハンサムである)といふことでないならば、そのときに限って、やってゆけない。」として、「 ハンサムでない。」のであれば、やってゆけない。
③「(弁舌があって、ハンサムである)といふことでないならば、そのときに限って、やってゆけない。」として、「弁舌がなくて、ハンサムでない。」のであれば、やってゆけない。
④「(弁舌があって、ハンサムである)といふことでないならば、そのときに限って、やってゆけない。」として、「弁舌があって、ハンサムである。」のであれば、はじめて、やってゆける。
然るに、
(14)
そこで話をもとにもどしてみる。
① の場合、-a+bであると訳すと「弁舌はなくて、ハンサムというのは、あぶない(ハンサムの上に弁舌を兼ねそなえてこそ、はじめてやってゆける)」ということになる。
② の場合、すなわち -(a+b)であると「弁舌があり、その上にハンサムでないかぎり、やってゆけない」ということになる。
(二畳庵主人、漢文法基礎、1984年10月、325頁)
然るに、
(15)
「二畳庵主人(加地伸行 先生)」が言ふ所の、
① -a+b
② -(a+b)
といふのは、
① ~A&B
② ~(A&B)
といふ「論理式」のことを、言ふ。
従って、
(10)~(15)により、
(16)
「二畳庵主人(加地伸行 先生)」は、
④ ~A&B⇔C,A&B├ ~C
といふ「連式」が「妥当」であると、述べてゐて、
「私の場合」は、
④ ~(A&B)⇔C,A&B├ ~C
といふ「連式」こそが「妥当」であると、言ってゐる。
然るに、
(17)
(ⅳ)
1 (1) ~A&B⇔C A
1 (2){~A&B→C}&{C→~A&B} 1Df.⇔
1 (3) C→~A&B 2&E
4(4) A&B A
4(5) ~~(A&B) 4DN
14(6) ~C 24MTT
といふ「計算(?)」は。もちろん、「マチガイ」である。
従って、
(16)(17)により、
(18)
「二畳庵主人(加地伸行 先生)」は、
④ ~A&B⇔C,A&B├ ~C
といふ「連式」が「妥当」であると、述べてゐるが、
④ ~A&B⇔C,A&B├ ~C
といふ「連式」は、実際には、「妥当」ではない。
令和02年08月28日、毛利太。
2020年8月27日木曜日
「二畳庵主人(加地伸行 先生)」の「(ド・モルガンの法則、に対する)誤解」について(Ⅱ)。
(01)
遂に出た!二畳庵主人『漢文法基礎』
まだ現物を見ていませんが、幻の書と言われた漢文の解説本が復刊されました。
2chの漢文参考書スレには必ずといっていいほど登場する本。
そして古本では必ず1万円以上する!!
というのも、いわゆる受験参考書だったために一般に流布せず、従って、国会図書館にも蔵書がなければ、地域や大学図書館などにもほぼ蔵書がないというものでした。扱いとしては図録と同じですね。でも、最近は図録は図書館でも見かけるようになりました。知る人ぞ知る、『漢文法基礎』です。久々に「買い」の本が出ましたよ。本は買わない宣言しちゃいましたが、今年はこの1冊だけ買って打ち止めにしようとすら思ってます。たぶんあまり数を刷っていないででしょうから、学術文庫版も早晩、品切れになるかと思われます。買うなら今です(古田島洋介、FC2ブログ、古代中国箚記)。
(02)
豈以為非是、而不貴也。
この傍線部分をどう読むかが問題である。
― 中略、―
そこで代数でいこう。「是」をa、「貴」をbとする。「豈」はどうなるかというと、これは反語表現マイナスで表せる。すると、
① -(-a)+(-b)、
② -(-a-b) の二つが考えられる。そこで括弧を解いてみよう。
① の場合、a-b となり、a・bにもとの意味を入れてみると「是、而不貴」である。訳してみると「(薄葬を)よろしいと考えるが、(薄葬を)尊重しない」というわけのわからないことになってしまって、アウト。
② の場合、-(-a-b)=a+b となるから「是、而貴」となる。訳してみると「(薄葬を)よろしいと考えて、尊重している」となって、墨家の立場をはっきりしめすことになる。
だからこの文章の場合、必ず②のように、「豈」(反語表現だから「不」は全体にかからねばならない。
(二畳庵主人、漢文法基礎、1984年10月、326・327頁改)
従って、
(02)により、
(03)
「二畳庵主人(加地信行 先生)」は、
① ~(~是&~貴)
② 是& 貴
に於いて、
①=② である。
と、されてゐる。
然るに、
(04)
(ⅰ)
1 (1) ~(~是&~貴) A
2 (2) ~( 是∨ 貴) A
3 (3) 是 A
3 (4) 是∨ 貴 3∨I
23 (5) ~( 是∨ 貴)&( 是∨ 貴) 24&I
2 (6) ~是 35RAA
7(7) 貴 A
7(8) 是∨ 貴 7∨I
2 7(9) ~( 是∨ 貴)&( 是∨ 貴) 27&I
2 (ア) ~貴 79RAA
2 (イ) ~是&~貴 7エ&I
12 (ウ) ~(~是&~貴)&(~是&~貴) 1イ&I
1 (エ)~~( 是∨ 貴) 2ウRAA
1 (オ) 是∨ 貴 1DN
(ⅱ)
1 (1) 是∨ 貴 A
2 (2) ~是&~貴 A
3 (3) 是 A
23 (4) ~是 2
23 (5) 是&~是 34&I
3 (6) ~(~是&~貴) 25RAA
7(7) 貴 A
2 (8) ~貴 2&E
2 7(9) 貴&貴 78
7(ア) ~(~是&~貴) 29RAA
1 (イ) ~(~是&~貴) 1367ア∨E
従って、
(04)により、
(05)
① ~(~是&~貴)
② 是∨ 貴
に於いて、
①=② である(ド・モルガンの法則)。
従って、
(03)(04)(05)により、
(06)
「二畳庵主人(加地信行 先生)」は、
① ~(~是&~貴)
② 是& 貴
に於いて、
①=② である。
と、されてゐるが、「ド・モルガンの法則」としては、
① ~(~是&~貴)
② 是∨ 貴
に於いて、
①=② である。
従って、
(02)(06)により、
(07)
「ド・モルガンの法則」に、「違反」してゐるが故に、
そこで代数でいこう。「是」をa、「貴」をbとする。「豈」はどうなるかというと、これは反語表現マイナスで表せる。すると、
① -(-a)+(-b)、
② -(-a-b) の二つが考えられる。そこで括弧を解いてみよう。
といふ、「二畳庵主人(加地信行 先生)」の「説明」は、「正しく」はない。
然るに、
(08)
(ⅰ)
1 (1)~(~是&~貴) A
2 (2) ~是 A
3(3) ~貴 A
23(4) ~是&~貴 23&I
123(5)~(~是&~貴)&
(~是&~貴) 14&I
1 3(6) ~~是 25RAA
1 3(7) 是 6DN
1 (8) ~貴→ 是 37CP
(ⅲ)
1 (1) ~貴→ 是 A
2 (2) ~是&~貴 A
2 (3) ~貴 2&E
12 (4) 是 13MPP
2 (5) ~是 2&E
12 (6) ~是&是 45&E
1 (7)~(~是&~貴) 26RAA
従って、
(08)により、
(09)
① ~(~是&~貴)
③ ~貴→ 是
に於いて、
①=③ である。
従って、
(06)(08)(09)により、
(10)
① ~(~是&~貴)
② 是∨ 貴
③ ~貴→ 是
に於いて、
①=②=③ であるが、因みに、
②=③ は、「含意の定義」である。
従って、
(06)(10)により、
(11)
「ド・モルガンの法則」、並びに、「含意の定義」により、
① ~(~是&~貴)
② 是∨ 貴
③ ~貴→ 是
に於いて、
①=②=③ である。
然るに、
(02)により、
(12)
③ ~貴→是
といふことは、
③(薄葬)を「尊重しない」ならば、(薄葬)を「ベスト(The best)」とする。
といふ、ことである。
従って、
(11)(12)により、
(13)
① ~(~是&~貴)
といふことは、
①(薄葬)を「尊重しない」のに、(薄葬)を「ベスト(The best)」とする。
といふ、ことであるが、もちろん、このことは、「矛盾」である。
といふ、ことである。
然るに、
(14)
「翻訳(小林勝人、孟子、1968年、224頁)」だけを示すと、「次(15)」のやうになる。
(15)
聞けば、夷子は墨翟の説を信じているそうだ。あの学派では、葬式をなるべく手薄(質素)にして倹約するのが主義だというが、夷子もやはりこの薄葬主義で、天下の風俗を改革しようと考えておるに相違ない。だから、どうしてこれ(薄葬)を正しくないのだからといって尊重せぬ筈があろうか。ところが、私の腑に落ちないのは、夷子が自分の親を葬ったときには、たいそう手厚くしたとのことだ。それでは、つまり自分のふだん賤しんでいるやり方(儒家の厚葬主義)で、親に仕えたことになる。〔なんと矛盾したおかしな話ではないか。〕
然るに、
従って、
(02)(11)~(15)により、
(16)
① ~(~是&~貴)≡豈以為非是、而不貴也。
といふことは、
① 夷子は、自分の親の葬儀では、(薄葬)を「尊重しなかった」のに、その夷子が、(薄葬)を「ベスト(The best)」とする。
といふことは、「矛盾」である。
といふ、ことである。
然るに、
(11)(16)により、
(17)
仮に、
① ~(~是&~貴)
② 是∨ 貴
③ ~貴→ 是
に於いて、
①=②=③ ではない、のであれば、
① ~(~是&~貴)≡豈以為非是、而不貴也。
といふことは、
① 夷子は、自分の親の葬儀では、(薄葬)を「尊重しなかった」のに、その夷子が、(薄葬)を「ベスト(The best)」とする。
といふことは、「矛盾」である。
といふ風には、言へない。
然るに、
(07)により、
(18)
もう一度、確認すると、
「二畳庵主人(加地信行 先生)」は、「ド・モルガンの法則」を、「理解」してゐない。
従って、
(01)(11)(16)(17)(18)により、
(19)
残念なことに、
① ~(~是&~貴)。⇔
① 豈以為非是、而不貴也。⇔
① 夷子は、自分の親の葬儀では、(薄葬)を「尊重しなかった」のに、その夷子が、(薄葬)を「ベスト(The best)」とする。といふことは、「矛盾」である。
といふことが、「漢文法基礎(幻の名著と言われた漢文の解説本)」には、書かれてはゐない。
令和02年08月27日、毛利太。
遂に出た!二畳庵主人『漢文法基礎』
まだ現物を見ていませんが、幻の書と言われた漢文の解説本が復刊されました。
2chの漢文参考書スレには必ずといっていいほど登場する本。
そして古本では必ず1万円以上する!!
というのも、いわゆる受験参考書だったために一般に流布せず、従って、国会図書館にも蔵書がなければ、地域や大学図書館などにもほぼ蔵書がないというものでした。扱いとしては図録と同じですね。でも、最近は図録は図書館でも見かけるようになりました。知る人ぞ知る、『漢文法基礎』です。久々に「買い」の本が出ましたよ。本は買わない宣言しちゃいましたが、今年はこの1冊だけ買って打ち止めにしようとすら思ってます。たぶんあまり数を刷っていないででしょうから、学術文庫版も早晩、品切れになるかと思われます。買うなら今です(古田島洋介、FC2ブログ、古代中国箚記)。
(02)
豈以為非是、而不貴也。
この傍線部分をどう読むかが問題である。
― 中略、―
そこで代数でいこう。「是」をa、「貴」をbとする。「豈」はどうなるかというと、これは反語表現マイナスで表せる。すると、
① -(-a)+(-b)、
② -(-a-b) の二つが考えられる。そこで括弧を解いてみよう。
① の場合、a-b となり、a・bにもとの意味を入れてみると「是、而不貴」である。訳してみると「(薄葬を)よろしいと考えるが、(薄葬を)尊重しない」というわけのわからないことになってしまって、アウト。
② の場合、-(-a-b)=a+b となるから「是、而貴」となる。訳してみると「(薄葬を)よろしいと考えて、尊重している」となって、墨家の立場をはっきりしめすことになる。
だからこの文章の場合、必ず②のように、「豈」(反語表現だから「不」は全体にかからねばならない。
(二畳庵主人、漢文法基礎、1984年10月、326・327頁改)
従って、
(02)により、
(03)
「二畳庵主人(加地信行 先生)」は、
① ~(~是&~貴)
② 是& 貴
に於いて、
①=② である。
と、されてゐる。
然るに、
(04)
(ⅰ)
1 (1) ~(~是&~貴) A
2 (2) ~( 是∨ 貴) A
3 (3) 是 A
3 (4) 是∨ 貴 3∨I
23 (5) ~( 是∨ 貴)&( 是∨ 貴) 24&I
2 (6) ~是 35RAA
7(7) 貴 A
7(8) 是∨ 貴 7∨I
2 7(9) ~( 是∨ 貴)&( 是∨ 貴) 27&I
2 (ア) ~貴 79RAA
2 (イ) ~是&~貴 7エ&I
12 (ウ) ~(~是&~貴)&(~是&~貴) 1イ&I
1 (エ)~~( 是∨ 貴) 2ウRAA
1 (オ) 是∨ 貴 1DN
(ⅱ)
1 (1) 是∨ 貴 A
2 (2) ~是&~貴 A
3 (3) 是 A
23 (4) ~是 2
23 (5) 是&~是 34&I
3 (6) ~(~是&~貴) 25RAA
7(7) 貴 A
2 (8) ~貴 2&E
2 7(9) 貴&貴 78
7(ア) ~(~是&~貴) 29RAA
1 (イ) ~(~是&~貴) 1367ア∨E
従って、
(04)により、
(05)
① ~(~是&~貴)
② 是∨ 貴
に於いて、
①=② である(ド・モルガンの法則)。
従って、
(03)(04)(05)により、
(06)
「二畳庵主人(加地信行 先生)」は、
① ~(~是&~貴)
② 是& 貴
に於いて、
①=② である。
と、されてゐるが、「ド・モルガンの法則」としては、
① ~(~是&~貴)
② 是∨ 貴
に於いて、
①=② である。
従って、
(02)(06)により、
(07)
「ド・モルガンの法則」に、「違反」してゐるが故に、
そこで代数でいこう。「是」をa、「貴」をbとする。「豈」はどうなるかというと、これは反語表現マイナスで表せる。すると、
① -(-a)+(-b)、
② -(-a-b) の二つが考えられる。そこで括弧を解いてみよう。
といふ、「二畳庵主人(加地信行 先生)」の「説明」は、「正しく」はない。
然るに、
(08)
(ⅰ)
1 (1)~(~是&~貴) A
2 (2) ~是 A
3(3) ~貴 A
23(4) ~是&~貴 23&I
123(5)~(~是&~貴)&
(~是&~貴) 14&I
1 3(6) ~~是 25RAA
1 3(7) 是 6DN
1 (8) ~貴→ 是 37CP
(ⅲ)
1 (1) ~貴→ 是 A
2 (2) ~是&~貴 A
2 (3) ~貴 2&E
12 (4) 是 13MPP
2 (5) ~是 2&E
12 (6) ~是&是 45&E
1 (7)~(~是&~貴) 26RAA
従って、
(08)により、
(09)
① ~(~是&~貴)
③ ~貴→ 是
に於いて、
①=③ である。
従って、
(06)(08)(09)により、
(10)
① ~(~是&~貴)
② 是∨ 貴
③ ~貴→ 是
に於いて、
①=②=③ であるが、因みに、
②=③ は、「含意の定義」である。
従って、
(06)(10)により、
(11)
「ド・モルガンの法則」、並びに、「含意の定義」により、
① ~(~是&~貴)
② 是∨ 貴
③ ~貴→ 是
に於いて、
①=②=③ である。
然るに、
(02)により、
(12)
③ ~貴→是
といふことは、
③(薄葬)を「尊重しない」ならば、(薄葬)を「ベスト(The best)」とする。
といふ、ことである。
従って、
(11)(12)により、
(13)
① ~(~是&~貴)
といふことは、
①(薄葬)を「尊重しない」のに、(薄葬)を「ベスト(The best)」とする。
といふ、ことであるが、もちろん、このことは、「矛盾」である。
といふ、ことである。
然るに、
(14)
「翻訳(小林勝人、孟子、1968年、224頁)」だけを示すと、「次(15)」のやうになる。
(15)
聞けば、夷子は墨翟の説を信じているそうだ。あの学派では、葬式をなるべく手薄(質素)にして倹約するのが主義だというが、夷子もやはりこの薄葬主義で、天下の風俗を改革しようと考えておるに相違ない。だから、どうしてこれ(薄葬)を正しくないのだからといって尊重せぬ筈があろうか。ところが、私の腑に落ちないのは、夷子が自分の親を葬ったときには、たいそう手厚くしたとのことだ。それでは、つまり自分のふだん賤しんでいるやり方(儒家の厚葬主義)で、親に仕えたことになる。〔なんと矛盾したおかしな話ではないか。〕
然るに、
従って、
(02)(11)~(15)により、
(16)
① ~(~是&~貴)≡豈以為非是、而不貴也。
といふことは、
① 夷子は、自分の親の葬儀では、(薄葬)を「尊重しなかった」のに、その夷子が、(薄葬)を「ベスト(The best)」とする。
といふことは、「矛盾」である。
といふ、ことである。
然るに、
(11)(16)により、
(17)
仮に、
① ~(~是&~貴)
② 是∨ 貴
③ ~貴→ 是
に於いて、
①=②=③ ではない、のであれば、
① ~(~是&~貴)≡豈以為非是、而不貴也。
といふことは、
① 夷子は、自分の親の葬儀では、(薄葬)を「尊重しなかった」のに、その夷子が、(薄葬)を「ベスト(The best)」とする。
といふことは、「矛盾」である。
といふ風には、言へない。
然るに、
(07)により、
(18)
もう一度、確認すると、
「二畳庵主人(加地信行 先生)」は、「ド・モルガンの法則」を、「理解」してゐない。
従って、
(01)(11)(16)(17)(18)により、
(19)
残念なことに、
① ~(~是&~貴)。⇔
① 豈以為非是、而不貴也。⇔
① 夷子は、自分の親の葬儀では、(薄葬)を「尊重しなかった」のに、その夷子が、(薄葬)を「ベスト(The best)」とする。といふことは、「矛盾」である。
といふことが、「漢文法基礎(幻の名著と言われた漢文の解説本)」には、書かれてはゐない。
令和02年08月27日、毛利太。
2020年8月26日水曜日
「パースの法則(其のⅩ)」。
(01)
(ⅰ)
1 (1) (P→Q)→P A
2 (2) ~P∨Q A
2 (3) P→Q 2含意の定義
12 (4) P 13MPP
1 (5) (~P∨Q)→P 24CP
1 (6)~(~P∨Q)∨P 5含意の定義
7 (7)~(~P∨Q) A
7 (8) P&~Q 7ド・モルガンの法則
7 (9) P 8&E
ア(ア) P A
1 (イ) P 679アア∨E
(ウ)((P→Q)→P)→P 1イCP
(ⅱ)
1 (1) P∨(P&~Q) A
2 (2) P A
3(3) P&~Q A
3(4) P 3&E
1 (5) P 12234∨E
(6)(P∨(P&~Q))→P 15CP
従って、
(01)により、
(02)
①((P→ Q)→P)→P
②(P∨(P&~Q))→P
に於いて、
① は、「恒真式(トートロジー)」であって、
② も、「恒真式(トートロジー)」である。
然るに、
(03)
(ⅰ)
1 (1) (P→Q)→P A
1 (2) ~(P→Q)∨P 1含意の定義
3 (3) ~(P→Q) A
3 (4) ~(~P∨Q) 3含意の定義
3 (5) (P&~Q) 4ド・モルガンの法則
3 (6)P∨(P&~Q) 5∨I
7(7) P A
7(8)P∨(P&~Q) 7∨I
1 (9)P∨(P&~Q) 23678∨E
(ⅱ)
1 (1)P∨(P&~Q) A
2 (2)P A
2 (3)~(P→Q)∨P 2∨I
4(4) P&~Q 1&E
4(5) P 4&E
4(6)~(P→Q)∨P 5∨I
1 (7)~(P→Q)∨P 12346∨E
1 (8) (P→Q)→P 7含意の定義
従って、
(03)により、
(04)
①((P→Q)→P)
②(P∨(P&~Q))
に於いて、
①=② である。
従って、
(02)(03)(04)により、
(05)
①((P→Q)→P)
②(P∨(P&~Q))
に於いて、
①=② であるが故に、「必然的」に、
①((P→Q)→P) →P
②(P∨(P&~Q))→P
に於いても、
①=② である。
(06)
(ⅲ)
1 (1) (P→~Q)→P A
2 (2) ~P∨~Q A
2 (3) P→~Q 2含意の定義
12 (4) P 13MPP
1 (5) (~P∨~Q)→P 24CP
1 (6)~(~P∨~Q)∨P 5含意の定義
7 (7)~(~P∨~Q) A
7 (8) P& Q 7ド・モルガンの法則
7 (9) P 8&E
ア(ア) P A
1 (イ) P 679アア∨E
(ウ)((P→~Q)→P)→P 1イCP
(ⅳ)
1 (1) P∨(P&Q) A
2 (2) P A
3(3) P&Q A
3(4) P 3&E
1 (5) P 12234∨E
(6)(P∨(P&Q))→P 15CP
従って、
(06)により、
(07)
③((P→~Q)→P)→P
④ (P∨(P&Q))→P
に於いて、
③ は、「恒真式(トートロジー)」であって、
④ も、「恒真式(トートロジー)」である。
然るに、
(08)
(ⅲ)
1 (1) (P→~Q)→P A
1 (2) ~(P→~Q)∨P 1含意の定義
3 (3) ~(P→~Q) A
3 (4)~(~P∨~Q) 3含意の定義
3 (5) (P& Q) 4ド・モルガンの法則
3 (6)P∨(P& Q) 5∨I
7(7) P A
7(8)P∨(P& Q) 7∨I
1 (9)(P→~Q)→P 23678∨E
(ⅳ)
1 (1)P∨(P& Q) A
2 (2)P A
2 (3)~(P→~Q)∨P 2∨I
4(4) P& Q 1&E
4(5) P 4&E
4(6)~(P→~Q)∨P 5∨I
1 (7)~(P→~Q)∨P 12346∨E
1 (8) (P→~Q)→P 7含意の定義
従って、
(08)により、
(09)
③((P→~Q)→P)
④ (P∨(P&Q))
に於いて
③=④ である。
従って、
(07)(08)(09)により、
(10)
③((P→~Q)→P)
④ (P∨(P&Q))
に於いて
③=④ であるが故に、「必然的」に、
③((P→~Q)→P)→P
④ (P∨(P&Q))→P
に於いて、
③=④ である。
従って、
(02)(05)(07)(10)により、
(11)
①((P→ Q)→P) →P
② (P∨(P&~Q))→P
③((P→~Q)→P) →P
④ (P∨(P& Q))→P
に於いて、
① は、「恒真式(トートロジー)」であって、
② も、「恒真式(トートロジー)」であって、
③ も、「恒真式(トートロジー)」であって、
④ も、「恒真式(トートロジー)」であって、
尚且つ、
①=② であって、
③=④ である。
従って、
(11)により、
(12)
「日本語」で言ふと、
①((PならばQである)ならばP)ならばPである。
②(Pであるか、または、(Pであって、Qでない)か、または、その両方である)ならば、Pである。
③((PならばQでない)ならばP)ならばPである。
④(Pであるか、または、(Pであって、Qである)か、または、その両方である)ならば、Pである。
に於いて、
① は、「恒真式(トートロジー)」であって、
② も、「恒真式(トートロジー)」であって、
③ も、「恒真式(トートロジー)」であって、
④ も、「恒真式(トートロジー)」であって、
尚且つ、
①=② であって、
③=④ である。
然るに、
(12)により、
(13)
①((PならばQである)ならばP)ならばPである。
③((PならばQでない)ならばP)ならばPである。
に於いて、
① は、「恒真式(トートロジー)」であって、
③ も、「恒真式(トートロジー)」である。
といふことは、
①((Pならば、Qであろうと、Qでなかろうと、)いづれにせよ、P)ならばPである。
といふことに、他ならない。
従って、
(13)により、
(14)
①((PならばQである)ならばP)ならばPである。
といふ「パースの法則」は、その実、
①((Pならば、Qであろうと、Qでなかろうと、)いづれにせよ、P)ならばPである。
といふ「法則」である。といふ、ことになるし、
①((Pならば、Qであろうと、Qでなかろうと、)いづれにせよ、P)ならばPである。
といふことは、当然、「恒真式(トートロジー)」である。
然るに、
(15)
②(Pであるか、または、(Pであって、Qでない)か、または、その両方である)ならば、Pである。
④(Pであるか、または、(Pであって、Qである)か、または、その両方である)ならば、Pである。
といふことも、当然、「恒真式(トートロジー)」である。
従って、
(11)~(15)により、
(16)
①((P→ Q)→P)→P
③((P→~Q)→P)→P
といふ「パースの法則」が、「恒真式(トートロジー)」である。
といふことは、「当然」である。
令和02年08月26日、毛利太。
(ⅰ)
1 (1) (P→Q)→P A
2 (2) ~P∨Q A
2 (3) P→Q 2含意の定義
12 (4) P 13MPP
1 (5) (~P∨Q)→P 24CP
1 (6)~(~P∨Q)∨P 5含意の定義
7 (7)~(~P∨Q) A
7 (8) P&~Q 7ド・モルガンの法則
7 (9) P 8&E
ア(ア) P A
1 (イ) P 679アア∨E
(ウ)((P→Q)→P)→P 1イCP
(ⅱ)
1 (1) P∨(P&~Q) A
2 (2) P A
3(3) P&~Q A
3(4) P 3&E
1 (5) P 12234∨E
(6)(P∨(P&~Q))→P 15CP
従って、
(01)により、
(02)
①((P→ Q)→P)→P
②(P∨(P&~Q))→P
に於いて、
① は、「恒真式(トートロジー)」であって、
② も、「恒真式(トートロジー)」である。
然るに、
(03)
(ⅰ)
1 (1) (P→Q)→P A
1 (2) ~(P→Q)∨P 1含意の定義
3 (3) ~(P→Q) A
3 (4) ~(~P∨Q) 3含意の定義
3 (5) (P&~Q) 4ド・モルガンの法則
3 (6)P∨(P&~Q) 5∨I
7(7) P A
7(8)P∨(P&~Q) 7∨I
1 (9)P∨(P&~Q) 23678∨E
(ⅱ)
1 (1)P∨(P&~Q) A
2 (2)P A
2 (3)~(P→Q)∨P 2∨I
4(4) P&~Q 1&E
4(5) P 4&E
4(6)~(P→Q)∨P 5∨I
1 (7)~(P→Q)∨P 12346∨E
1 (8) (P→Q)→P 7含意の定義
従って、
(03)により、
(04)
①((P→Q)→P)
②(P∨(P&~Q))
に於いて、
①=② である。
従って、
(02)(03)(04)により、
(05)
①((P→Q)→P)
②(P∨(P&~Q))
に於いて、
①=② であるが故に、「必然的」に、
①((P→Q)→P) →P
②(P∨(P&~Q))→P
に於いても、
①=② である。
(06)
(ⅲ)
1 (1) (P→~Q)→P A
2 (2) ~P∨~Q A
2 (3) P→~Q 2含意の定義
12 (4) P 13MPP
1 (5) (~P∨~Q)→P 24CP
1 (6)~(~P∨~Q)∨P 5含意の定義
7 (7)~(~P∨~Q) A
7 (8) P& Q 7ド・モルガンの法則
7 (9) P 8&E
ア(ア) P A
1 (イ) P 679アア∨E
(ウ)((P→~Q)→P)→P 1イCP
(ⅳ)
1 (1) P∨(P&Q) A
2 (2) P A
3(3) P&Q A
3(4) P 3&E
1 (5) P 12234∨E
(6)(P∨(P&Q))→P 15CP
従って、
(06)により、
(07)
③((P→~Q)→P)→P
④ (P∨(P&Q))→P
に於いて、
③ は、「恒真式(トートロジー)」であって、
④ も、「恒真式(トートロジー)」である。
然るに、
(08)
(ⅲ)
1 (1) (P→~Q)→P A
1 (2) ~(P→~Q)∨P 1含意の定義
3 (3) ~(P→~Q) A
3 (4)~(~P∨~Q) 3含意の定義
3 (5) (P& Q) 4ド・モルガンの法則
3 (6)P∨(P& Q) 5∨I
7(7) P A
7(8)P∨(P& Q) 7∨I
1 (9)(P→~Q)→P 23678∨E
(ⅳ)
1 (1)P∨(P& Q) A
2 (2)P A
2 (3)~(P→~Q)∨P 2∨I
4(4) P& Q 1&E
4(5) P 4&E
4(6)~(P→~Q)∨P 5∨I
1 (7)~(P→~Q)∨P 12346∨E
1 (8) (P→~Q)→P 7含意の定義
従って、
(08)により、
(09)
③((P→~Q)→P)
④ (P∨(P&Q))
に於いて
③=④ である。
従って、
(07)(08)(09)により、
(10)
③((P→~Q)→P)
④ (P∨(P&Q))
に於いて
③=④ であるが故に、「必然的」に、
③((P→~Q)→P)→P
④ (P∨(P&Q))→P
に於いて、
③=④ である。
従って、
(02)(05)(07)(10)により、
(11)
①((P→ Q)→P) →P
② (P∨(P&~Q))→P
③((P→~Q)→P) →P
④ (P∨(P& Q))→P
に於いて、
① は、「恒真式(トートロジー)」であって、
② も、「恒真式(トートロジー)」であって、
③ も、「恒真式(トートロジー)」であって、
④ も、「恒真式(トートロジー)」であって、
尚且つ、
①=② であって、
③=④ である。
従って、
(11)により、
(12)
「日本語」で言ふと、
①((PならばQである)ならばP)ならばPである。
②(Pであるか、または、(Pであって、Qでない)か、または、その両方である)ならば、Pである。
③((PならばQでない)ならばP)ならばPである。
④(Pであるか、または、(Pであって、Qである)か、または、その両方である)ならば、Pである。
に於いて、
① は、「恒真式(トートロジー)」であって、
② も、「恒真式(トートロジー)」であって、
③ も、「恒真式(トートロジー)」であって、
④ も、「恒真式(トートロジー)」であって、
尚且つ、
①=② であって、
③=④ である。
然るに、
(12)により、
(13)
①((PならばQである)ならばP)ならばPである。
③((PならばQでない)ならばP)ならばPである。
に於いて、
① は、「恒真式(トートロジー)」であって、
③ も、「恒真式(トートロジー)」である。
といふことは、
①((Pならば、Qであろうと、Qでなかろうと、)いづれにせよ、P)ならばPである。
といふことに、他ならない。
従って、
(13)により、
(14)
①((PならばQである)ならばP)ならばPである。
といふ「パースの法則」は、その実、
①((Pならば、Qであろうと、Qでなかろうと、)いづれにせよ、P)ならばPである。
といふ「法則」である。といふ、ことになるし、
①((Pならば、Qであろうと、Qでなかろうと、)いづれにせよ、P)ならばPである。
といふことは、当然、「恒真式(トートロジー)」である。
然るに、
(15)
②(Pであるか、または、(Pであって、Qでない)か、または、その両方である)ならば、Pである。
④(Pであるか、または、(Pであって、Qである)か、または、その両方である)ならば、Pである。
といふことも、当然、「恒真式(トートロジー)」である。
従って、
(11)~(15)により、
(16)
①((P→ Q)→P)→P
③((P→~Q)→P)→P
といふ「パースの法則」が、「恒真式(トートロジー)」である。
といふことは、「当然」である。
令和02年08月26日、毛利太。
2020年8月25日火曜日
「漢文の基本構造」の「表示法」。
(01)
漢語文法の基礎となっている文法的関係として、次の四つの関係(構造)をあげることができる。
(一)主述構造 主語―述語
(二)修飾構造 修飾語―被修飾語
(三)補足構造 叙述語―補足語
(四)並列構造 並列語―並列語
(鈴木直治、中国語と漢文、1975年、281・282頁改)
従って、
(01)により、
(02)
① 我非必欲以美田養妻子者。
といふ「漢文」を、
① 我*非必欲以美田養妻子者。
と書くならば、
① 我* は、「主語*」である。
同じく、
(01)により、
(03)
① 我*非必+欲以美+田養妻子+者。
と書くならば、
① +以 は、「+被修飾語」であって、
① +田 は、「+被修飾語」であって、
① +者 は、「+被修飾語」である。
然るに、
(04)
① 我非必欲以美田養妻子者也=
① 我非[必欲〔以(美田)養(妻子)〕者]也⇒
① 我[必〔(美田)以(妻子)養〕欲者]非也=
① 我は[必ずしも〔(美田を)以て(妻子を)養はんと〕欲する者に]非ざる也。
然るに、
(05)
漢語における語順は、国語と大きく違っているところがある。すなわち、その補足構造における語順は、国語とは全く反対である。しかし、訓読は、国語の語順に置きかえて読むことが、その大きな原則となっている。それでその補足構造によっている文も、返り点によって、国語としての語順が示されている(鈴木直治、中国語と漢文、1975年、296頁)。
従って、
(01)(04)(05)により、
(06)
① 我*非[必+欲〔以(美+田)養(妻子)〕+者]也。
と書くならば、
①[ 〔 ( )( ) 〕 ] は「補足構造」である。
然るに、
(01)(06)により、
(07)
① 我*非[必+欲〔以(美+田)養(妻・子)〕+者]也。
と書くならば、
① ・子 は「・並列語」である。
従って、
(01)~(07)により、
(08)
① 我非必欲以美田養妻子者。
といふ「漢文」を、
① 我*非[必+欲〔以(美+田)養(妻・子)〕+者]也。
と書くならば、その中には、
(一)主述構造 主語―述語
(二)修飾構造 修飾語―被修飾語
(三)補足構造 叙述語―補足語
(四)並列構造 並列語―並列語
といふ「構造」が、四つとも、示されてゐる。
然るに、
(09)
② 君子不以其所以養人者害人=
② 君子不{以[其所‐以〔養(人)〕者]害(人)}⇒
② 君子{[其〔(人)養〕所‐以者]以(人)害}不=
② 君子は{[其の〔(人を)養ふ〕所‐以の者]以て(人を)害せ}不。
に於いて、
②「所‐以」は、「複合語」であって、「複合語」といふ「カテゴリー」は、
(一)主述構造 主語―述語
(二)修飾構造 修飾語―被修飾語
(三)補足構造 叙述語―補足語
(四)並列構造 並列語―並列語
といふ「四つ」の中には無い。
そのため、
(10)
「複合語」を表す「記号」として、「‐(接続線)」を導入する。
従って、
(08)~(10)により、
(11)
② 君子不以其所以養人者害人=
② 君+子*不{以[其+所‐以〔〔養(人)〕+者]害(人)}。
である。
(12)
③ 欲呼張良与倶去=
③ 欲〔呼(張良)与倶去〕=
③ 欲〔呼(張良)与(張良)倶去〕=
③ 〔(張良)呼(張良)与倶去〕欲=
③ 〔(張良を)呼びて(張良)と倶に去らんと〕欲す。
従って、
(12)により、
(13)
③ 欲呼張良与倶去。
の場合は、
③ 欲呼張良与張良倶去。
の、 張良 が、「省略」されてゐる。
従って、
(08)(12)(13)の場合は、
(14)
③ 欲呼張良与倶去。
の場合は、
③ 欲〔呼(張良)与(##)倶+去〕。
といふ風に、書くことにする。
(15)
④ 所謂、致知在格物者、言欲致吾之知、在物而窮其理也=
④ 所‐謂、致(知)在〔格(物)〕者、言[欲〔致(吾之知)〕、在〔即(物)而窮(其理)〕]也=
④ 所‐謂、(知)致〔(物)格〕在者、[〔(吾之知)致〕欲、〔(物)即而(其理)窮〕在]言也=
④ 所‐謂、(知を)致し〔(物に)格るに〕在りトハ、[〔(吾ノ知を)致さんと〕欲すれば、〔(物に)即きテ(其の理を)窮はむる〕在るを]言ふ也。
従って、
(15)により、
(16)
④「者」=「トハ」。
④「之」=「ノ」。
④「而」=「テ」。
であるものの、これらの「助詞」は、「太字で、書く」ことにする。
従って、
(08)(10)(16)により、
(17)
④ 所謂、致知在格物者、言欲致吾之知、在物而窮其理也=
④ 所‐謂、致(知)在〔格(物)〕者、言[欲〔致(吾之知)〕、在〔即(物)而窮(其+理)〕]也。
従って、
(01)~(17)により、
(18)
例へば、
① 我非必欲以美田養妻子者。
② 君子不以其所以養人者害。
③ 欲呼張良与張良倶去。
④ 所謂、致知在格物者、言欲致吾之知、在物而窮其理也。
といふ「漢文の基本構造」は、例へば、
① 我*非[必+欲〔以(美+田)養(妻・子)〕+者]也。
② 君+子*不{以[其+所‐以〔〔養(人)〕+者害(人)}。
③ 欲〔呼(張良)与(##)倶+去〕。
④ 所‐謂、致(知)在〔格(物)〕者、言[欲〔致(吾之知)〕、在〔即(物)而窮(其+理)〕]也。
といふ風に、表すことが、出来る。
(19)
【君子】クンシ ① 徳の高い立派な人。
【コ】シ ② 男子の通稱。
(大修館、大漢和辞典)
従って、
(19)により、
(20)
君子=君(立派な)+子(男子)
である。
従って、
(01)(21)により、
(21)
君子=君(立派な)+子(男子)
君子=君(修飾語)+子(被修飾語)
であるが、
形容詞(修飾語)+名詞(被修飾語)
だけでなく、
副詞(修飾語)+動詞(被修飾語)
の場合も、
(二)修飾構造 修飾語―被修飾語
であるため、「注意」が、必要である。
令和02年08月25日、毛利太。
漢語文法の基礎となっている文法的関係として、次の四つの関係(構造)をあげることができる。
(一)主述構造 主語―述語
(二)修飾構造 修飾語―被修飾語
(三)補足構造 叙述語―補足語
(四)並列構造 並列語―並列語
(鈴木直治、中国語と漢文、1975年、281・282頁改)
従って、
(01)により、
(02)
① 我非必欲以美田養妻子者。
といふ「漢文」を、
① 我*非必欲以美田養妻子者。
と書くならば、
① 我* は、「主語*」である。
同じく、
(01)により、
(03)
① 我*非必+欲以美+田養妻子+者。
と書くならば、
① +以 は、「+被修飾語」であって、
① +田 は、「+被修飾語」であって、
① +者 は、「+被修飾語」である。
然るに、
(04)
① 我非必欲以美田養妻子者也=
① 我非[必欲〔以(美田)養(妻子)〕者]也⇒
① 我[必〔(美田)以(妻子)養〕欲者]非也=
① 我は[必ずしも〔(美田を)以て(妻子を)養はんと〕欲する者に]非ざる也。
然るに、
(05)
漢語における語順は、国語と大きく違っているところがある。すなわち、その補足構造における語順は、国語とは全く反対である。しかし、訓読は、国語の語順に置きかえて読むことが、その大きな原則となっている。それでその補足構造によっている文も、返り点によって、国語としての語順が示されている(鈴木直治、中国語と漢文、1975年、296頁)。
従って、
(01)(04)(05)により、
(06)
① 我*非[必+欲〔以(美+田)養(妻子)〕+者]也。
と書くならば、
①[ 〔 ( )( ) 〕 ] は「補足構造」である。
然るに、
(01)(06)により、
(07)
① 我*非[必+欲〔以(美+田)養(妻・子)〕+者]也。
と書くならば、
① ・子 は「・並列語」である。
従って、
(01)~(07)により、
(08)
① 我非必欲以美田養妻子者。
といふ「漢文」を、
① 我*非[必+欲〔以(美+田)養(妻・子)〕+者]也。
と書くならば、その中には、
(一)主述構造 主語―述語
(二)修飾構造 修飾語―被修飾語
(三)補足構造 叙述語―補足語
(四)並列構造 並列語―並列語
といふ「構造」が、四つとも、示されてゐる。
然るに、
(09)
② 君子不以其所以養人者害人=
② 君子不{以[其所‐以〔養(人)〕者]害(人)}⇒
② 君子{[其〔(人)養〕所‐以者]以(人)害}不=
② 君子は{[其の〔(人を)養ふ〕所‐以の者]以て(人を)害せ}不。
に於いて、
②「所‐以」は、「複合語」であって、「複合語」といふ「カテゴリー」は、
(一)主述構造 主語―述語
(二)修飾構造 修飾語―被修飾語
(三)補足構造 叙述語―補足語
(四)並列構造 並列語―並列語
といふ「四つ」の中には無い。
そのため、
(10)
「複合語」を表す「記号」として、「‐(接続線)」を導入する。
従って、
(08)~(10)により、
(11)
② 君子不以其所以養人者害人=
② 君+子*不{以[其+所‐以〔〔養(人)〕+者]害(人)}。
である。
(12)
③ 欲呼張良与倶去=
③ 欲〔呼(張良)与倶去〕=
③ 欲〔呼(張良)与(張良)倶去〕=
③ 〔(張良)呼(張良)与倶去〕欲=
③ 〔(張良を)呼びて(張良)と倶に去らんと〕欲す。
従って、
(12)により、
(13)
③ 欲呼張良与倶去。
の場合は、
③ 欲呼張良与張良倶去。
の、 張良 が、「省略」されてゐる。
従って、
(08)(12)(13)の場合は、
(14)
③ 欲呼張良与倶去。
の場合は、
③ 欲〔呼(張良)与(##)倶+去〕。
といふ風に、書くことにする。
(15)
④ 所謂、致知在格物者、言欲致吾之知、在物而窮其理也=
④ 所‐謂、致(知)在〔格(物)〕者、言[欲〔致(吾之知)〕、在〔即(物)而窮(其理)〕]也=
④ 所‐謂、(知)致〔(物)格〕在者、[〔(吾之知)致〕欲、〔(物)即而(其理)窮〕在]言也=
④ 所‐謂、(知を)致し〔(物に)格るに〕在りトハ、[〔(吾ノ知を)致さんと〕欲すれば、〔(物に)即きテ(其の理を)窮はむる〕在るを]言ふ也。
従って、
(15)により、
(16)
④「者」=「トハ」。
④「之」=「ノ」。
④「而」=「テ」。
であるものの、これらの「助詞」は、「太字で、書く」ことにする。
従って、
(08)(10)(16)により、
(17)
④ 所謂、致知在格物者、言欲致吾之知、在物而窮其理也=
④ 所‐謂、致(知)在〔格(物)〕者、言[欲〔致(吾之知)〕、在〔即(物)而窮(其+理)〕]也。
従って、
(01)~(17)により、
(18)
例へば、
① 我非必欲以美田養妻子者。
② 君子不以其所以養人者害。
③ 欲呼張良与張良倶去。
④ 所謂、致知在格物者、言欲致吾之知、在物而窮其理也。
といふ「漢文の基本構造」は、例へば、
① 我*非[必+欲〔以(美+田)養(妻・子)〕+者]也。
② 君+子*不{以[其+所‐以〔〔養(人)〕+者害(人)}。
③ 欲〔呼(張良)与(##)倶+去〕。
④ 所‐謂、致(知)在〔格(物)〕者、言[欲〔致(吾之知)〕、在〔即(物)而窮(其+理)〕]也。
といふ風に、表すことが、出来る。
(19)
【君子】クンシ ① 徳の高い立派な人。
【コ】シ ② 男子の通稱。
(大修館、大漢和辞典)
従って、
(19)により、
(20)
君子=君(立派な)+子(男子)
である。
従って、
(01)(21)により、
(21)
君子=君(立派な)+子(男子)
君子=君(修飾語)+子(被修飾語)
であるが、
形容詞(修飾語)+名詞(被修飾語)
だけでなく、
副詞(修飾語)+動詞(被修飾語)
の場合も、
(二)修飾構造 修飾語―被修飾語
であるため、「注意」が、必要である。
令和02年08月25日、毛利太。
2020年8月24日月曜日
「返り点」が表し得る「順番」について。
(01)
「(学校で習ふ)返り点」は、
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)上 中 下
(ⅳ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅴ)天 地 人
であるが、以下では、
(ⅲ)上 中 下
(ⅳ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
の「順番」を変へて、
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下
(ⅴ)天 地 人
であるとする。
ただし、
(02)
「説明の便宜」のために、
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下 #
(ⅴ)天 地 人 間
(ⅵ)元 亨 利 貞
とするが、
(ⅵ)元 亨 利 貞
に関しては、「ウィキペディア」を参照した。
(03)
(ⅰ)レ 一レ 上レ 甲レ 天レ
に於ける、
(ⅰ) 一レ 上レ 甲レ 天レ
に関しては、「一二・甲乙・上下・天地 点」であるとし、
「レ点」を挟んで返る際には、
「一二点」を用ひ、
「一二点」を挟んで返る際には、
「甲乙点」を用ひ、
「甲乙点」を挟んで返る際には、
「上下点」を用ひ、
「上下点」を挟んで返る際には、
「天地点」を用ひ、
「天地点」を挟んで返る際には、
「元亨点」を用ひる。
とする。
然るに、
(04)
① □地 □ □下 □ □乙 □ □二 □ □レ □ □一レ □ □甲レ □ □上レ □ □天レ □
② □利 □ □人 □ □下 □ □丙 □ □二 □一 □乙 □甲 □中 □上 □地 □天 □亨 □元
従って、
(03)(04)
(05)
① 地 下 乙 二 レ 一レ 甲レ 上レ 天レ
② 利 人 下 丙 二 一 乙 甲 中 上 地 天 亨 元
に於いて、
①=② である。
従って、
(02)(05)により、
(06)
① 人 地 下 中 丙 乙 三 二 レ 一レ 甲レ 上レ 天レ
② 貞 利 間 人 # 下 丁 丙 二 一 乙 甲 中 上 地 天 亨 元
に於いて、
①=② である。
従って、
(02)(06)により、
(07)
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下 #
(ⅴ)天 地 人 間
(ⅵ)元 亨 利 貞
に於いて、
(ⅰ)レ 一レ 上レ 甲レ 天レ
は、実際には、「不要」である。
従って、
(01)(02)(07)により、
(08)
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下
(ⅴ)天 地 人
といふ「返り点」が表し得る「順番」は、
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下 #
(ⅴ)天 地 人 間
(ⅵ)元 亨 利 貞
に「等しい」。
然るに、
(09)
少なくとも私は、
(ⅰ)人 地 天レ
(〃)貞 利 亨 元
といふ「返り点」を、「見たこと」が無い。
従って、
(08)(09)により、
(10)
(ⅰ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅱ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅲ)上 中 下
(ⅳ)天 地 人
を用ひて、示し得る「順番」が、「返り点」が示し得る「順番」であって、
(ⅰ)を挟んで返る場合には、(ⅱ)を用ひ、
(ⅱ)を挟んで返る場合には、(ⅲ)を用ひ、
(ⅲ)を挟んで返る場合には、(ⅳ)を用ひる。
といふことを、『ルール』とする。
従って、
(10)により、
(11)
例へば、
③ 人 □ □ 下 丙 二 □ 一 乙 □ 甲 中 上 二 □ 一 □ 地 □ 天。
に於いて、
③ 人 下 丙 二 一 乙 甲 中 上 二 一 地 天
といふ「13文字」が、「返り点が、付いてゐる漢字」であって、
③ □ □ □ □ □ □ □
といふ「7文字」が、「返り点が、付いてゐない漢字」であるならば、
③ は、『ルール』を、満たしてゐる。
然るに、
(12)
1= 1
2= 2
3= 3
4= 4
5= 5
6= 6
7= 7
8= 8
9= 9
A=10
B=11
C=12
D=13
E=14
F=15
に於いて、
「1~9」は、「一桁の10進数」であって、
「1~F」は、「一桁の16進数」である。
従って、
(12)により、
(13)
「1~9」は、「一桁の10進数」であって、
「1~K」は、「一桁の21進数」である。
従って、
(11)(12)(13)により、
(14)
③ 人 □ □ 下 丙 二 □ 一 乙 □ 甲 中 上 二 □ 一 □ 地 □ 天。
に於ける、「返り点」に換へて、
③「20個の漢字」に対して、「訓読の語順」に従って、直接、
③「1~K(一桁の21進数)」を、「振り分ける」ことが出来る。
然るに、
(15)
③ 人{□□下[丙〔二(□一)乙(□甲)〕中(上)]二(□一)□地(□天)}。
人{ }⇒{ }人
下[ ]⇒[ ]下
丙〔 〕⇒〔 〕丙
二( )⇒( )二
乙( )⇒( )乙
二( )⇒( )二
地( )⇒( )地
といふ「移動」を行ふと、
③ 人{□□下[丙〔二(□一)乙(□甲)〕中(上)]二(□一)□地(□天)}⇒
③ {□□[〔(□一)二(□甲)乙〕丙(上)中]下(□一)二□(□天)地}人。
といふ「語順」を、得ることが出来る。
従って、、
(14)(15)により、
(16)
③ 人{□□下[丙〔二(□一)乙(□甲)〕中(上)]二(□一)□地(□天)}⇒
④ {□□[〔(□一)二(□甲)乙〕丙(上)中]下(□一)二□(□天)地}人。
に於いて、
④ {□□[〔(□一)二(□甲)乙〕丙(上)中]下(□一)二□(□天)地}人。
の場合は、
④ {12[〔(34)5(67)8〕9(A)B]C(DE)FG(HI)J}K。
といふ、「(20個の、21進数の、)昇べき順」に「対応」する。
然るに、
(17)
④ {12[〔(34)5(67)8〕9(A)B]C(DE)FG(HI)J}K=
④ {□□[〔(□一)二(□甲)乙〕丙(上)中]下(□一)二□(□天)地}人。
に於いて、
{ }K⇒K{ }
[ ]C⇒C[ ]
〔 〕9⇒9〔 〕
( )5⇒5( )
( )8⇒8( )
( )F⇒F( )
( )J⇒J( )
といふ「移動」を行ふと、
④ {12[〔(34)5(67)8〕9(A)B]C(DE)FG(HI)J}K⇒
③ K{12C[9〔5(34)8(67)〕B(A)]F(DE)GJ(HI)}=
③ 人{□□下[丙〔二(□一)乙(□甲)〕中(上)]二(□一)□地(□天)}。
従って、
(11)~(17)により、
(18)
1= 1
2= 2
3= 3
4= 4
5= 5
6= 6
7= 7
8= 8
9= 9
A=10
B=11
C=12
D=13
E=14
F=15
G=16
H=17
I=18
J=19
K=20
であるとして、
③ 人 □ □ 下 丙 二 □ 一 乙 □ 甲 中 上 二 □ 一 □ 地 □ 天。
といふ「返り点」は、
③ K 1 2 C 9 5 3 4 8 6 7 B A F D E G J H I。
といふ、「訓読の順番」を、示してゐる。
然るに、
(18)により、
(19)
③ K 1 2 C 9 5 3 4 8 6 7 B A F D E G J H I。
に於いて、
③ Kと J の間には、
③ Kよりも「大きい数」は無く
③ Cと B の間にも、
③ Cよりも「大きい数」は無く、
③ 9と 8 の間にも、
③ 9よりも「大きい数」は無く、
③ 5と 4 の間にも、
③ 5よりも「大きい数」は無く、
③ 8と 7 の間にも、
③ 8よりも「大きい数」は無く、
③ Fと E の間にも、
③ Fよりも「大きい数」は無く、
③ Jと I の間にも、
③ Jよりも「大きい数」は無い。
従って、
(11)~(19)により、
(20)
(ⅰ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅱ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅲ)上 中 下
(ⅳ)天 地 人
といふ「返り点」に於いて、
(ⅰ)を挟んで返る場合には、(ⅱ)を用ひ、
(ⅱ)を挟んで返る場合には、(ⅲ)を用ひ、
(ⅲ)を挟んで返る場合には、(ⅳ)を用ひる。
といふ『ルール』に従ふ限り、「返り点」が示し得る「順番」の中には、例へば、
2<3>1
2<3 4>1
2<4 3>1
B<C>A
B<C D>A
B<D C>A
といふ「順番」は無い。
cf.
「A B C D」は、「(アルファベットではなく)4つの、一桁の、n進数」。
従って、
(20)により、
(21)
① 文読漢。
② 文読不漢。
③ 文不読漢。
に対して、
① 文二読三漢一。
② 文二読三不四漢一。
③ 文二不四読三漢一。
といふ「返り点・モドキ」を付けて、
① 漢文を読む。
② 漢文を読まず。
③ 漢文を読まず。
といふに、「訓読」されることは無いものの、固より、
① 読(漢文)。
② 不〔読(漢文)〕。
といふ「漢文」は、「漢文」であるが、
① 文(読〔漢)〕。
② 文(読〔不[漢)〕]。
③ 文(不[読〔漢)〕]。
といふ「それ」は、「漢文」ではない。
従って、
(07)~(21)により、
(22)
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)上 中 下
(ⅳ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅴ)天 地 人
といふ「(現行の)返り点」であれ、
(ⅰ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅱ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅲ)上 中 下
(ⅳ)天 地 人
といふ「返り点」であれ、いづれにせよ、例へば、
2<3>1
2<3 4>1
2<4 3>1
B<C>A
B<C D>A
B<D C>A
といふ「順番」に対しては、「返り点」を「付けること」が、出来ない。
令和02年08月24日、毛利太。
「(学校で習ふ)返り点」は、
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)上 中 下
(ⅳ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅴ)天 地 人
であるが、以下では、
(ⅲ)上 中 下
(ⅳ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
の「順番」を変へて、
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下
(ⅴ)天 地 人
であるとする。
ただし、
(02)
「説明の便宜」のために、
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下 #
(ⅴ)天 地 人 間
(ⅵ)元 亨 利 貞
とするが、
(ⅵ)元 亨 利 貞
に関しては、「ウィキペディア」を参照した。
(03)
(ⅰ)レ 一レ 上レ 甲レ 天レ
に於ける、
(ⅰ) 一レ 上レ 甲レ 天レ
に関しては、「一二・甲乙・上下・天地 点」であるとし、
「レ点」を挟んで返る際には、
「一二点」を用ひ、
「一二点」を挟んで返る際には、
「甲乙点」を用ひ、
「甲乙点」を挟んで返る際には、
「上下点」を用ひ、
「上下点」を挟んで返る際には、
「天地点」を用ひ、
「天地点」を挟んで返る際には、
「元亨点」を用ひる。
とする。
然るに、
(04)
① □地 □ □下 □ □乙 □ □二 □ □レ □ □一レ □ □甲レ □ □上レ □ □天レ □
② □利 □ □人 □ □下 □ □丙 □ □二 □一 □乙 □甲 □中 □上 □地 □天 □亨 □元
従って、
(03)(04)
(05)
① 地 下 乙 二 レ 一レ 甲レ 上レ 天レ
② 利 人 下 丙 二 一 乙 甲 中 上 地 天 亨 元
に於いて、
①=② である。
従って、
(02)(05)により、
(06)
① 人 地 下 中 丙 乙 三 二 レ 一レ 甲レ 上レ 天レ
② 貞 利 間 人 # 下 丁 丙 二 一 乙 甲 中 上 地 天 亨 元
に於いて、
①=② である。
従って、
(02)(06)により、
(07)
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下 #
(ⅴ)天 地 人 間
(ⅵ)元 亨 利 貞
に於いて、
(ⅰ)レ 一レ 上レ 甲レ 天レ
は、実際には、「不要」である。
従って、
(01)(02)(07)により、
(08)
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下
(ⅴ)天 地 人
といふ「返り点」が表し得る「順番」は、
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下 #
(ⅴ)天 地 人 間
(ⅵ)元 亨 利 貞
に「等しい」。
然るに、
(09)
少なくとも私は、
(ⅰ)人 地 天レ
(〃)貞 利 亨 元
といふ「返り点」を、「見たこと」が無い。
従って、
(08)(09)により、
(10)
(ⅰ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅱ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅲ)上 中 下
(ⅳ)天 地 人
を用ひて、示し得る「順番」が、「返り点」が示し得る「順番」であって、
(ⅰ)を挟んで返る場合には、(ⅱ)を用ひ、
(ⅱ)を挟んで返る場合には、(ⅲ)を用ひ、
(ⅲ)を挟んで返る場合には、(ⅳ)を用ひる。
といふことを、『ルール』とする。
従って、
(10)により、
(11)
例へば、
③ 人 □ □ 下 丙 二 □ 一 乙 □ 甲 中 上 二 □ 一 □ 地 □ 天。
に於いて、
③ 人 下 丙 二 一 乙 甲 中 上 二 一 地 天
といふ「13文字」が、「返り点が、付いてゐる漢字」であって、
③ □ □ □ □ □ □ □
といふ「7文字」が、「返り点が、付いてゐない漢字」であるならば、
③ は、『ルール』を、満たしてゐる。
然るに、
(12)
1= 1
2= 2
3= 3
4= 4
5= 5
6= 6
7= 7
8= 8
9= 9
A=10
B=11
C=12
D=13
E=14
F=15
に於いて、
「1~9」は、「一桁の10進数」であって、
「1~F」は、「一桁の16進数」である。
従って、
(12)により、
(13)
「1~9」は、「一桁の10進数」であって、
「1~K」は、「一桁の21進数」である。
従って、
(11)(12)(13)により、
(14)
③ 人 □ □ 下 丙 二 □ 一 乙 □ 甲 中 上 二 □ 一 □ 地 □ 天。
に於ける、「返り点」に換へて、
③「20個の漢字」に対して、「訓読の語順」に従って、直接、
③「1~K(一桁の21進数)」を、「振り分ける」ことが出来る。
然るに、
(15)
③ 人{□□下[丙〔二(□一)乙(□甲)〕中(上)]二(□一)□地(□天)}。
人{ }⇒{ }人
下[ ]⇒[ ]下
丙〔 〕⇒〔 〕丙
二( )⇒( )二
乙( )⇒( )乙
二( )⇒( )二
地( )⇒( )地
といふ「移動」を行ふと、
③ 人{□□下[丙〔二(□一)乙(□甲)〕中(上)]二(□一)□地(□天)}⇒
③ {□□[〔(□一)二(□甲)乙〕丙(上)中]下(□一)二□(□天)地}人。
といふ「語順」を、得ることが出来る。
従って、、
(14)(15)により、
(16)
③ 人{□□下[丙〔二(□一)乙(□甲)〕中(上)]二(□一)□地(□天)}⇒
④ {□□[〔(□一)二(□甲)乙〕丙(上)中]下(□一)二□(□天)地}人。
に於いて、
④ {□□[〔(□一)二(□甲)乙〕丙(上)中]下(□一)二□(□天)地}人。
の場合は、
④ {12[〔(34)5(67)8〕9(A)B]C(DE)FG(HI)J}K。
といふ、「(20個の、21進数の、)昇べき順」に「対応」する。
然るに、
(17)
④ {12[〔(34)5(67)8〕9(A)B]C(DE)FG(HI)J}K=
④ {□□[〔(□一)二(□甲)乙〕丙(上)中]下(□一)二□(□天)地}人。
に於いて、
{ }K⇒K{ }
[ ]C⇒C[ ]
〔 〕9⇒9〔 〕
( )5⇒5( )
( )8⇒8( )
( )F⇒F( )
( )J⇒J( )
といふ「移動」を行ふと、
④ {12[〔(34)5(67)8〕9(A)B]C(DE)FG(HI)J}K⇒
③ K{12C[9〔5(34)8(67)〕B(A)]F(DE)GJ(HI)}=
③ 人{□□下[丙〔二(□一)乙(□甲)〕中(上)]二(□一)□地(□天)}。
従って、
(11)~(17)により、
(18)
1= 1
2= 2
3= 3
4= 4
5= 5
6= 6
7= 7
8= 8
9= 9
A=10
B=11
C=12
D=13
E=14
F=15
G=16
H=17
I=18
J=19
K=20
であるとして、
③ 人 □ □ 下 丙 二 □ 一 乙 □ 甲 中 上 二 □ 一 □ 地 □ 天。
といふ「返り点」は、
③ K 1 2 C 9 5 3 4 8 6 7 B A F D E G J H I。
といふ、「訓読の順番」を、示してゐる。
然るに、
(18)により、
(19)
③ K 1 2 C 9 5 3 4 8 6 7 B A F D E G J H I。
に於いて、
③ Kと J の間には、
③ Kよりも「大きい数」は無く
③ Cと B の間にも、
③ Cよりも「大きい数」は無く、
③ 9と 8 の間にも、
③ 9よりも「大きい数」は無く、
③ 5と 4 の間にも、
③ 5よりも「大きい数」は無く、
③ 8と 7 の間にも、
③ 8よりも「大きい数」は無く、
③ Fと E の間にも、
③ Fよりも「大きい数」は無く、
③ Jと I の間にも、
③ Jよりも「大きい数」は無い。
従って、
(11)~(19)により、
(20)
(ⅰ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅱ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅲ)上 中 下
(ⅳ)天 地 人
といふ「返り点」に於いて、
(ⅰ)を挟んで返る場合には、(ⅱ)を用ひ、
(ⅱ)を挟んで返る場合には、(ⅲ)を用ひ、
(ⅲ)を挟んで返る場合には、(ⅳ)を用ひる。
といふ『ルール』に従ふ限り、「返り点」が示し得る「順番」の中には、例へば、
2<3>1
2<3 4>1
2<4 3>1
B<C>A
B<C D>A
B<D C>A
といふ「順番」は無い。
cf.
「A B C D」は、「(アルファベットではなく)4つの、一桁の、n進数」。
従って、
(20)により、
(21)
① 文読漢。
② 文読不漢。
③ 文不読漢。
に対して、
① 文二読三漢一。
② 文二読三不四漢一。
③ 文二不四読三漢一。
といふ「返り点・モドキ」を付けて、
① 漢文を読む。
② 漢文を読まず。
③ 漢文を読まず。
といふに、「訓読」されることは無いものの、固より、
① 読(漢文)。
② 不〔読(漢文)〕。
といふ「漢文」は、「漢文」であるが、
① 文(読〔漢)〕。
② 文(読〔不[漢)〕]。
③ 文(不[読〔漢)〕]。
といふ「それ」は、「漢文」ではない。
従って、
(07)~(21)により、
(22)
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)上 中 下
(ⅳ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅴ)天 地 人
といふ「(現行の)返り点」であれ、
(ⅰ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅱ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅲ)上 中 下
(ⅳ)天 地 人
といふ「返り点」であれ、いづれにせよ、例へば、
2<3>1
2<3 4>1
2<4 3>1
B<C>A
B<C D>A
B<D C>A
といふ「順番」に対しては、「返り点」を「付けること」が、出来ない。
令和02年08月24日、毛利太。
2020年8月23日日曜日
「(レ点を含む)現行の返り点」は「読みづらい」。
(01)
① 吾得三兄二事之一
〔説明〕「兄事」から「得」へ、「2文字」からであるので レ点 ではなく、三 を使う。
(志村和久、漢文早わかり、1982年、15頁改)
然るに、
(02)
「兄事」といふ「2文字」を、「1語」として「扱ふ」ための「接続線(‐)」である。
従って、
(01)(02)により、
(03)
「兄‐事」といふ「2文字」を、「1語」と見做すのであれば、
① 吾得三兄二事之一 ではなく、
① 吾得レ兄二事之一 でなければ、ならない。
(04)
レ点が下の字の左肩につけるものであることを知らないと、「為二人一レ欺」の場合に「一レ」の形になることが説明できない。また、「為二人所レ欺一」というような、誤った返り点をつけるものがある。レ点は下の字に属するものであることを知っていない専門家もいる。
(原田種成、私の漢文講、1995年、42頁)
然るに、
(05)
② 為二人所一レ欺
③ 為三人所二欺一
に於いて、
②=③ であるし、
② 二 一レ
③ 三 二 一
に於いて、
② よりも、
③ の方が、「分かり易い」。
然るに、
(06)
④ 知下 我 不レ 羞二 小 節一 而 恥中 功 名 不上レ 顕二 于 天 下一 也。
然るに、
(07)
⑤ 知戊 我 不三 羞二 小 節一 而 恥丁 功 名 不丙 顕乙 于 天 下甲 也。
である。
従って、
(06)(07)により、
(08)
④ 知下 我 不レ 羞二 小 節一 而 恥中 功 名 不上レ 顕二 于 天 下一 也。
⑤ 知戊 我 不三 羞二 小 節一 而 恥丁 功 名 不丙 顕乙 于 天 下甲 也。
に於いて、
④=⑤ であるし、
④ 下 レ 二 一 中 上レ 二 一
⑤ 戊 三 二 一 丁 丙 乙 甲
に於いて、
④ よりも、
⑤ の方が、「はるかに、分かり易い」。
然るに、
(09)(10)従って、
(07)~(10)により、
(11)
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)上 中 下
(ⅳ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅴ)天 地 人
または、
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)上 中 下
の「順番」を「逆」にした、
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下
(ⅴ)天 地 人
に於いて、
(ⅰ)レ点
は、「除くこと」が出来るし、その方が、「返り点」としては、「分かり易い」。
令和02年08月23日、毛利太。
① 吾得三兄二事之一
〔説明〕「兄事」から「得」へ、「2文字」からであるので レ点 ではなく、三 を使う。
(志村和久、漢文早わかり、1982年、15頁改)
然るに、
(02)
「兄事」といふ「2文字」を、「1語」として「扱ふ」ための「接続線(‐)」である。
従って、
(01)(02)により、
(03)
「兄‐事」といふ「2文字」を、「1語」と見做すのであれば、
① 吾得三兄二事之一 ではなく、
① 吾得レ兄二事之一 でなければ、ならない。
(04)
レ点が下の字の左肩につけるものであることを知らないと、「為二人一レ欺」の場合に「一レ」の形になることが説明できない。また、「為二人所レ欺一」というような、誤った返り点をつけるものがある。レ点は下の字に属するものであることを知っていない専門家もいる。
(原田種成、私の漢文講、1995年、42頁)
然るに、
(05)
② 為二人所一レ欺
③ 為三人所二欺一
に於いて、
②=③ であるし、
② 二 一レ
③ 三 二 一
に於いて、
② よりも、
③ の方が、「分かり易い」。
然るに、
(06)
④ 知下 我 不レ 羞二 小 節一 而 恥中 功 名 不上レ 顕二 于 天 下一 也。
然るに、
(07)
⑤ 知戊 我 不三 羞二 小 節一 而 恥丁 功 名 不丙 顕乙 于 天 下甲 也。
である。
従って、
(06)(07)により、
(08)
④ 知下 我 不レ 羞二 小 節一 而 恥中 功 名 不上レ 顕二 于 天 下一 也。
⑤ 知戊 我 不三 羞二 小 節一 而 恥丁 功 名 不丙 顕乙 于 天 下甲 也。
に於いて、
④=⑤ であるし、
④ 下 レ 二 一 中 上レ 二 一
⑤ 戊 三 二 一 丁 丙 乙 甲
に於いて、
④ よりも、
⑤ の方が、「はるかに、分かり易い」。
然るに、
(09)(10)従って、
(07)~(10)により、
(11)
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)上 中 下
(ⅳ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅴ)天 地 人
または、
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)上 中 下
の「順番」を「逆」にした、
(ⅰ)レ 一レ 上レ 甲レ 天レ
(ⅱ)一 二 三 四 五 六 七 八 九 十 ・・・・・・
(ⅲ)甲 乙 丙 丁 戊 己 庚 辛 壬 癸
(ⅳ)上 中 下
(ⅴ)天 地 人
に於いて、
(ⅰ)レ点
は、「除くこと」が出来るし、その方が、「返り点」としては、「分かり易い」。
令和02年08月23日、毛利太。
2020年8月22日土曜日
「返り点」に対する「括弧」の「読み方」。
(01)
①( )
②〔 〕
③[ ]
④{ }
⑤〈 〉
に於いて、
① は「括弧」。
② も「括弧」。
③ も「括弧」。
④ も「括弧」。
⑤ も「括弧」。
であるとする。
(02)
①(
②〔
③[
④{
⑤〈
に於いて、
① は「括 」。
② も「括 」。
③ も「括 」。
④ も「括 」。
⑤ も「括 」。
であるとする。
(03)
① )
② 〕
③ ]
④ }
⑤ 〉
に於いて、
① は「 弧」。
② も「 弧」。
③ も「 弧」。
④ も「 弧」。
⑤ も「 弧」。
であるとする。
(04)
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
に於いて、
① 非 は「括の左」。
① 不 も「括の左」。
① 求 も「括の左」。
① 以 も「括の左」。
① 解 も「括の左」。
① 解 も「括の左」。
であるとする。
(05)
② 我〈必{[〔(中国語)解法〕以(漢文)解]求}不者〉非也。
に於いて、
② 非 は「弧の右」。
② 不 も「弧の右」。
② 求 も「弧の右」。
② 以 も「弧の右」。
② 解 も「弧の右」。
② 解 も「弧の右」。
であるとする。
従って、
(04)(05)
(06)
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
に於いて、
① 非〈 〉⇒〈 〉非
① 不{ }⇒{ }不
① 求[ ]⇒[ ]求
① 以〔 〕⇒〔 〕以
① 解( )⇒( )解
① 解( )⇒( )解
といふ「移動」を行った「結果」として、
② 我〈必{[〔(中国語)解法〕以(漢文)解]求}不者〉非也。
といふ「語順」を得る。
といふことは、
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
に於いて、それぞれの、
②「括の左」を、「弧の右」に「移動する」。
といふことに、他ならない。
然るに、
(07)
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
に於いて、
① 非 は、〈 〉の中を「読んだ直後に読む」。
① 不 は、{ }の中を「読んだ直後に読む」。
① 求 は、[ ]の中を「読んだ直後に読む」。
① 以 は、〔 〕の中を「読んだ直後に読む」。
① 解 は、( )の中を「読んだ直後に読む」。
① 解 は、( )の中を「読んだ直後に読む」。
といふことは、
② 我〈必{[〔(中国語)解法〕以(漢文)解]求}不者〉非也。
といふ「語順」を、「左から右へ読む。」といふことに、「等しい」。
従って、
(01)~(07)により、
(08)
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
といふ「語順」を、
② 我は〈必ずしも{[〔(中国語を)解する法を〕以て(漢文を)解せんことを]求め}不る者に〉非ざる也。
といふ、「訓読の語順で読む。」といふことは、
(ⅰ)
「括の左」以外は、「(普通に、)左から右へ読む。」
(ⅱ)
「括の左」は、「括弧の中」を「読んだ直後に読む。」
といふことに、他ならない。
従って、
(08)により、
(09)
(ⅰ)
「括の左」以外は、「(普通に、)左から右へ読む。」
(ⅱ)
「括の左」は、「括弧の中」を「読んだ直後に読む。」
といふ『ルール』に「従ふこと」によって、例へば、
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
といふ「語順」は、
② 我は〈必ずしも{[〔(中国語を)解する法を〕以て(漢文を)解せんことを]求め}不る者に〉非ざる也。
といふ、「訓読の語順」で読むことが出来る。
然るに、
(10)
この漢語文法の基礎となっている文法的関係として、次の四つの関係(構造)をあげることができる。
(一)主述構造 主語―述語
(二)修飾構造 修飾語―被修飾語
(三)補足構造 叙述語―補足語
(四)並列構造 並列語―並列語
(鈴木直治、中国語と漢文、1975年、281・282頁改)
然るに、
(11)
漢語における語順は、国語と大きく違っているところがある。すなわち、その補足構造における語順は、国語とは全く反対である。しかし、訓読は、国語の語順に置きかえて読むことが、その大きな原則となっている。それでその補足構造によっている文も、返り点によって、国語としての語順が示されている(鈴木直治、中国語と漢文、1975年、296頁)。
従って、
(09)(10)(11)により、
(12)
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
に於ける、
(ⅱ)
「括の左」は、「括弧の中」を「読んだ直後に読む。」
に於いて、
「括の左」といふのは、
(三)補足構造 叙述語―補足語
で謂ふ所の、
「叙述語」である。
といふ、ことになる。
従って、
(09)~(12)により、
(13)
① 我非必不求以解中国語法解漢文者也=
① 我非地必不レ求丙以下解二中国語一法上解乙漢文甲者天也=
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也⇒
② 我は〈必ずしも{[〔(中国語を)解する法を〕以て(漢文を)解せんことを]求め}不る者に〉非ざる也。
といふ「漢文訓読」に於ける、
①〈 { [ 〔 ( ) 〕( ) ] } 〉
②〈 { [ 〔 ( ) 〕( ) ] } 〉
といふ「括弧」は、
(a)「漢文」の補足構造。
(b)「国語」の補足構造。
(c)「漢文訓読」の語順。
といふ、「3つの事柄」を、表してゐる。
従って、
(13)により、
(14)
③ 我非必不求以解語法解文者也=
③ 我非乙必不レ求下以ニ解レ語法一解上レ文者甲也=
③ 我非〈必不{求[以〔解(語)法〕解(文)]}者〉也⇒
④ 我は〈必ずしも{[〔(語を)解する法を〕以て(文を)解せんことを]求め}不る者に〉非ざる也。
といふ「漢文訓読」に於ける、
③〈 { [ 〔 ( ) 〕( ) ] } 〉
④〈 { [ 〔 ( ) 〕( ) ] } 〉
といふ「括弧」も、
(a)「漢文」の補足構造。
(b)「国語」の補足構造。
(c)「漢文訓読」の語順。
といふ、「3つの事柄」を、表してゐる。
従って、
(13)(14)により、
(15)
① 我非必不求以解中国語法解漢文者也。
③ 我非必不求以解語法解文者也。
といふ「漢文」に於いて、両者の「補足構造」は、
①〈 { [ 〔 ( ) 〕( ) ] } 〉
③〈 { [ 〔 ( ) 〕( ) ] } 〉
といふ風に、「等しい」ものの、両者の「返り点」は、
① 地 レ 丙 下 二 一 上 乙 甲 天
③ 乙 レ 下 二 レ 一 上レ 甲
といふ風に、「等しく」はない。
然るに、
(16)
① 我非地必不丁求丙以下解二中国語一法上解乙漢文甲者天也。
③ 我非地必不丁求丙以下解二語一法上解乙文甲者天也。
であるため、
① 地 レ 丙 下 二 一 上 乙 甲 天
③ 乙 レ 下 二 レ 一 上レ 甲
といふ「返り点(レ点あり)」は、
① 地 丁 丙 下 二 一 上 乙 甲 天
③ 地 丁 丙 下 二 一 上 乙 甲 天
といふ「返り点(レ点なし)」に、「置き換へ」が可能である。
然るに、
(17)
① 地〈丁{丙[下〔二(一)上〕乙(甲)]}天〉
に於いて、
① 地〈 〉⇒〈 〉地
① 丁{ }⇒{ }丁
① 丙[ ]⇒[ ]丙
① 下〔 〕⇒〔 〕下
① 二( )⇒( )ニ
① 乙( )⇒( )乙
といふ「移動」を行ふと、
① 地〈丁{丙[下〔二(一)上〕乙(甲)]}天〉⇒
① 〈{[〔(一)二上〕下(甲)乙]丙}丁天〉地=
① 一 二 上 下 甲 乙 丙 丁 天 地。
従って、
(14)~(17)により、
(18)
① 地 丁 丙 下 二 一 上 乙 甲 天
③ 地 丁 丙 下 二 一 上 乙 甲 天
といふ「返り点(レ点なし)」を、
① 地 レ 丙 下 二 一 上 乙 甲 天
③ 乙 レ 下 二 レ 一 上レ 甲
といふ「返り点(レ点あり)」に、「置き換へ」た。
といふ風に、「理解」するならば、その限りに於いて、
① 地 レ 丙 下 二 一 上 乙 甲 天
③ 乙 レ 下 二 レ 一 上レ 甲
といふ「返り点(レ点あり)」であっても、
(a)「漢文」の補足構造。
(b)「国語」の補足構造。
(c)「漢文訓読」の語順。
といふ、「3つの事柄」を、表してゐる。
令和02年08月22日、毛利太。
①( )
②〔 〕
③[ ]
④{ }
⑤〈 〉
に於いて、
① は「括弧」。
② も「括弧」。
③ も「括弧」。
④ も「括弧」。
⑤ も「括弧」。
であるとする。
(02)
①(
②〔
③[
④{
⑤〈
に於いて、
① は「括 」。
② も「括 」。
③ も「括 」。
④ も「括 」。
⑤ も「括 」。
であるとする。
(03)
① )
② 〕
③ ]
④ }
⑤ 〉
に於いて、
① は「 弧」。
② も「 弧」。
③ も「 弧」。
④ も「 弧」。
⑤ も「 弧」。
であるとする。
(04)
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
に於いて、
① 非 は「括の左」。
① 不 も「括の左」。
① 求 も「括の左」。
① 以 も「括の左」。
① 解 も「括の左」。
① 解 も「括の左」。
であるとする。
(05)
② 我〈必{[〔(中国語)解法〕以(漢文)解]求}不者〉非也。
に於いて、
② 非 は「弧の右」。
② 不 も「弧の右」。
② 求 も「弧の右」。
② 以 も「弧の右」。
② 解 も「弧の右」。
② 解 も「弧の右」。
であるとする。
従って、
(04)(05)
(06)
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
に於いて、
① 非〈 〉⇒〈 〉非
① 不{ }⇒{ }不
① 求[ ]⇒[ ]求
① 以〔 〕⇒〔 〕以
① 解( )⇒( )解
① 解( )⇒( )解
といふ「移動」を行った「結果」として、
② 我〈必{[〔(中国語)解法〕以(漢文)解]求}不者〉非也。
といふ「語順」を得る。
といふことは、
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
に於いて、それぞれの、
②「括の左」を、「弧の右」に「移動する」。
といふことに、他ならない。
然るに、
(07)
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
に於いて、
① 非 は、〈 〉の中を「読んだ直後に読む」。
① 不 は、{ }の中を「読んだ直後に読む」。
① 求 は、[ ]の中を「読んだ直後に読む」。
① 以 は、〔 〕の中を「読んだ直後に読む」。
① 解 は、( )の中を「読んだ直後に読む」。
① 解 は、( )の中を「読んだ直後に読む」。
といふことは、
② 我〈必{[〔(中国語)解法〕以(漢文)解]求}不者〉非也。
といふ「語順」を、「左から右へ読む。」といふことに、「等しい」。
従って、
(01)~(07)により、
(08)
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
といふ「語順」を、
② 我は〈必ずしも{[〔(中国語を)解する法を〕以て(漢文を)解せんことを]求め}不る者に〉非ざる也。
といふ、「訓読の語順で読む。」といふことは、
(ⅰ)
「括の左」以外は、「(普通に、)左から右へ読む。」
(ⅱ)
「括の左」は、「括弧の中」を「読んだ直後に読む。」
といふことに、他ならない。
従って、
(08)により、
(09)
(ⅰ)
「括の左」以外は、「(普通に、)左から右へ読む。」
(ⅱ)
「括の左」は、「括弧の中」を「読んだ直後に読む。」
といふ『ルール』に「従ふこと」によって、例へば、
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
といふ「語順」は、
② 我は〈必ずしも{[〔(中国語を)解する法を〕以て(漢文を)解せんことを]求め}不る者に〉非ざる也。
といふ、「訓読の語順」で読むことが出来る。
然るに、
(10)
この漢語文法の基礎となっている文法的関係として、次の四つの関係(構造)をあげることができる。
(一)主述構造 主語―述語
(二)修飾構造 修飾語―被修飾語
(三)補足構造 叙述語―補足語
(四)並列構造 並列語―並列語
(鈴木直治、中国語と漢文、1975年、281・282頁改)
然るに、
(11)
漢語における語順は、国語と大きく違っているところがある。すなわち、その補足構造における語順は、国語とは全く反対である。しかし、訓読は、国語の語順に置きかえて読むことが、その大きな原則となっている。それでその補足構造によっている文も、返り点によって、国語としての語順が示されている(鈴木直治、中国語と漢文、1975年、296頁)。
従って、
(09)(10)(11)により、
(12)
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也。
に於ける、
(ⅱ)
「括の左」は、「括弧の中」を「読んだ直後に読む。」
に於いて、
「括の左」といふのは、
(三)補足構造 叙述語―補足語
で謂ふ所の、
「叙述語」である。
といふ、ことになる。
従って、
(09)~(12)により、
(13)
① 我非必不求以解中国語法解漢文者也=
① 我非地必不レ求丙以下解二中国語一法上解乙漢文甲者天也=
① 我非〈必不{求[以〔解(中国語)法〕解(漢文)]}者〉也⇒
② 我は〈必ずしも{[〔(中国語を)解する法を〕以て(漢文を)解せんことを]求め}不る者に〉非ざる也。
といふ「漢文訓読」に於ける、
①〈 { [ 〔 ( ) 〕( ) ] } 〉
②〈 { [ 〔 ( ) 〕( ) ] } 〉
といふ「括弧」は、
(a)「漢文」の補足構造。
(b)「国語」の補足構造。
(c)「漢文訓読」の語順。
といふ、「3つの事柄」を、表してゐる。
従って、
(13)により、
(14)
③ 我非必不求以解語法解文者也=
③ 我非乙必不レ求下以ニ解レ語法一解上レ文者甲也=
③ 我非〈必不{求[以〔解(語)法〕解(文)]}者〉也⇒
④ 我は〈必ずしも{[〔(語を)解する法を〕以て(文を)解せんことを]求め}不る者に〉非ざる也。
といふ「漢文訓読」に於ける、
③〈 { [ 〔 ( ) 〕( ) ] } 〉
④〈 { [ 〔 ( ) 〕( ) ] } 〉
といふ「括弧」も、
(a)「漢文」の補足構造。
(b)「国語」の補足構造。
(c)「漢文訓読」の語順。
といふ、「3つの事柄」を、表してゐる。
従って、
(13)(14)により、
(15)
① 我非必不求以解中国語法解漢文者也。
③ 我非必不求以解語法解文者也。
といふ「漢文」に於いて、両者の「補足構造」は、
①〈 { [ 〔 ( ) 〕( ) ] } 〉
③〈 { [ 〔 ( ) 〕( ) ] } 〉
といふ風に、「等しい」ものの、両者の「返り点」は、
① 地 レ 丙 下 二 一 上 乙 甲 天
③ 乙 レ 下 二 レ 一 上レ 甲
といふ風に、「等しく」はない。
然るに、
(16)
① 我非地必不丁求丙以下解二中国語一法上解乙漢文甲者天也。
③ 我非地必不丁求丙以下解二語一法上解乙文甲者天也。
であるため、
① 地 レ 丙 下 二 一 上 乙 甲 天
③ 乙 レ 下 二 レ 一 上レ 甲
といふ「返り点(レ点あり)」は、
① 地 丁 丙 下 二 一 上 乙 甲 天
③ 地 丁 丙 下 二 一 上 乙 甲 天
といふ「返り点(レ点なし)」に、「置き換へ」が可能である。
然るに、
(17)
① 地〈丁{丙[下〔二(一)上〕乙(甲)]}天〉
に於いて、
① 地〈 〉⇒〈 〉地
① 丁{ }⇒{ }丁
① 丙[ ]⇒[ ]丙
① 下〔 〕⇒〔 〕下
① 二( )⇒( )ニ
① 乙( )⇒( )乙
といふ「移動」を行ふと、
① 地〈丁{丙[下〔二(一)上〕乙(甲)]}天〉⇒
① 〈{[〔(一)二上〕下(甲)乙]丙}丁天〉地=
① 一 二 上 下 甲 乙 丙 丁 天 地。
従って、
(14)~(17)により、
(18)
① 地 丁 丙 下 二 一 上 乙 甲 天
③ 地 丁 丙 下 二 一 上 乙 甲 天
といふ「返り点(レ点なし)」を、
① 地 レ 丙 下 二 一 上 乙 甲 天
③ 乙 レ 下 二 レ 一 上レ 甲
といふ「返り点(レ点あり)」に、「置き換へ」た。
といふ風に、「理解」するならば、その限りに於いて、
① 地 レ 丙 下 二 一 上 乙 甲 天
③ 乙 レ 下 二 レ 一 上レ 甲
といふ「返り点(レ点あり)」であっても、
(a)「漢文」の補足構造。
(b)「国語」の補足構造。
(c)「漢文訓読」の語順。
といふ、「3つの事柄」を、表してゐる。
令和02年08月22日、毛利太。
2020年8月21日金曜日
「日本語」と「命題計算」で考へる「ド・モルガンの法則」と「千里の馬」。
(01)
①(Pであって、尚且つ、Qである)といふことはない。
といふことは、
②(PとQが、同時に「真(本当)」になる)といふことはない。
といふことである。
然るに、
(02)
②(PとQが、同時に「真(本当)」になる)といふことはない。
といふことは、
② Pでないか、または、Qでないか、または、Pでも、Qでもない。
といふことである。
然るに、
(03)
②(PとQが、同時に「真(本当)」になる)といふことはない。
といふことは、
③ Pが「真(本当)」であるならば、Qは「偽(ウソ)」であり、
④ Qが「真(本当)」であるならば、Pは「偽(ウソ)」である。
といふことである。
然るに、
(04)
③ Pが「真(本当)」であるならば、Qは「偽(ウソ)」であり、
④ Qが「真(本当)」であるならば、Pは「偽(ウソ)」である。
といふことは、
③ Pであるならば、Qではなく、
④ Qであるならば、Pではない。
といふことである。
従って、
(01)~(04)により、
(05)
「日本語」で考へれば、「簡単に分る」通り、
①(Pであって、尚且つ、Qである)といふことはない。
② Pでないか、または、Qでないか、または、Pでも、Qでもない。
③ Pであるならば、Qでない。
④ Qであるならば、Pでない。
に於いて
①=②=③=④ である。
従って、
(05)により、
(06)
「命題計算」の「記号」で書くと、
① ~(P& Q)
② ~P∨~Q
③ P→~Q
④ Q→~P
に於いて
①=②=③=④ である。
然るに、
(07)
(ⅰ)
1 (1) ~( P& Q) A
2 (2) ~(~P∨~Q) A
3 (3) ~P A
3 (4) ~P∨~Q 3∨I
23 (5) ~(~P∨~Q)&(~P∨~Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
8(8) ~Q A
8(9) ~P∨~Q 8∨I
2 8(ア) ~(~P∨~Q)&(~P∨~Q) 28&I
2 (イ) ~~Q 8アRAA
2 (ウ) Q イDN
2 (エ) P& Q 7ウ&I
12 (オ) ~( P& Q)&( P& Q) 1エ&I
1 (カ)~~(~P∨~Q) 2オRAA
1 (キ) ~P∨~Q 1DN
(ⅱ)
1 (1) ~P∨~Q A
2 (2) P& Q A
3 (3) ~P A
23 (4) P 2
23 (5) ~P& P 34&I
3 (6) ~(P& Q) 25RAA
7(7) ~Q A
2 (8) Q 2&E
2 7(9) ~Q&Q 78
7(ア) ~(P& Q) 29RAA
1 (イ) ~(P& Q) 1367ア∨E
然るに、
(08)
(ⅰ)
1 (1)~(P& Q) A
2 (2) P A
3(3) Q A
23(4) P& Q 23&I
123(5)~(P& Q)&
(P& Q) 14&I
12 (6) ~Q 35RAA
1 (7) P→~Q 26CP
(ⅲ)
1 (1) P→~Q A
2 (2) P& Q A
2 (3) P 2&E
12 (4) ~Q 13MPP
2 (5) Q 2&E
12 (6) ~Q&Q 45&I
1 (7)~(P& Q) 26RAA
然るに、
(09)
(ⅰ)
1 (1)~(P& Q) A
2 (2) Q A
3(3) P A
23(4) P& Q 23&I
123(5)~〔P& Q〕&
〔P& Q〕 14&I
12 (6) ~P 35RAA
1 (7) Q→~P 26CP
(ⅳ)
1 (1) Q→~P A
2 (2) P& Q A
2 (3) Q 2&E
12 (4) ~P 13MPP
2 (5) P 2&E
12 (6) P&~P 45&I
1 (7)~(P& Q) 26RAA
従って、
(05)~(09)により、
(10)
① ~(P& Q)≡(Pであって、尚且つ、Qである)といふことはない。
② ~P∨~Q ≡ Pでないか、または、Qでないか、または、その両方である。
③ P→~Q ≡ Pであるならば、Qでない。
④ Q→~P ≡ Qであるならば、Pでない。
に於いて、
「日本語」で考へても、「命題論理」で計算しても、
①=②=③=④ である。
然るに、
(11)
(ⅰ)
1 (1)Q A
2(2)Q→~P A
12(3) ~P 12MPP
従って、
(11)により、
(12)
① Q,Q→~P├ ~P
といふ「連式(Sequent)」は、「妥当」である。
然るに、
(10)により、
(13)
「番号」を付け直すと、
① Q→~P ≡ Qであるならば、Pでない。
② ~(P& Q)≡(Pであって、尚且つ、Qである)といふことはない。
に於いて、
①=② である。
従って、
(12)(13)により、
(14)
① Q, Q→~P ├ ~P
② Q,~(P& Q)├ ~P
といふ「連式(Sequents)」は、「妥当」である。
従って、
(14)により、
(15)
「~」=「不」
「&」=「而」
「Q」=「食馬(馬を養ふ)。」
「P」=「知其能千里(その能の千里なるを知る)。」
とするならば、
① 食馬、不(知其能千里而食)。故、不(知其能千里)。
といふ「連式(Sequent)」は、「妥当」である。
然るに、
(16)
② 食レ馬者、不下知二其能千里一食上。
② 馬を食ふ者は、其の能の千里なるを知りて食はず。
② 馬の飼い主は、自分の馬が千里も走る能力があることを知って飼うことをしない。
(旺文社、漢文の基礎、1973年、153・154頁改)
然るに、
(17)
言ふまでもなく、
②(馬を食ふ者は、馬を)食ふ。
従って、
(15)(16)(17)により、
(18)
② 食馬者、不(知其能千里而食)。故に、不(知其能千里)。
といふ「連式(Sequent)」は、「妥当」である。
従って、
(16)(17)(18)により、
(19)
② 馬を食ふ者は、其の能の千里なるを知りて食はず。故に、其の能の千里なるを知らず。
といふ「連式(Sequent)」は、「妥当」である。
従って、
(16)(19)により、
(20)
② 食レ馬者、不下知二其能千里一食上。
といふ「漢文」は、
② 馬を養ふ者は、其の能の千里なるを知らずに、馬を養ふ。
といふ、「意味」になる。
然るに、
(21)
① 食レ馬者、不下知二其能千里一食上。
② 知ニ其能千里一而食レ食。
この ①・② の読み方を書き下し文になおすと、どちらも「その能の千里なるを知ってしかし食わず」であって同じである。だから書き下し文を見ただけでは、①か②か どちらかという判断はできない。
それでは、意味はどうなるかと、全く違うのである。すなわち、次のようになる。
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
②「その(馬の)働きが一日に千里も走れるほどであることを知っておりながら、〈それ相応に飼育しない〉」
(二畳庵主人、漢文法基礎、1984年10月、390頁)
然るに、
(22)
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
②「其の能の千里なるを知らずに、馬を養ふ。」
に於いて、
①=② ではない。
従って、
(20)(21)(22)により、
(23)
① 食レ馬者、不下知二其能千里一食上。
といふ「漢文」は、
②「其の能の千里なるを知らずに、馬を養ふ。」
といふ「意味」であって、
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
といふ「意味」でない。
然るに、
(21)(23)により、
(24)
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
から、
①「それ相応に」といふ「副詞句」を除くと、
①「馬を飼育する者は、その(馬の)働きが一日に千里も走れるのを知らないし、飼育しない。」
といふことになる。
然るに、
(25)
①「馬を飼育する者は、馬を、飼育しない。」
といふのは、「矛盾」である。
従って、
(24)(25)により、
(26)
①「馬を飼育する者は、馬を、飼育しない。」
といふ「矛盾」を「糊塗する」する上で、
①「馬を飼育する者は、その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
といふ「訳文」から、
①「それ相応に」といふ「副詞句」を除くことは、出来ない。
令和02年08月21日、毛利太。
①(Pであって、尚且つ、Qである)といふことはない。
といふことは、
②(PとQが、同時に「真(本当)」になる)といふことはない。
といふことである。
然るに、
(02)
②(PとQが、同時に「真(本当)」になる)といふことはない。
といふことは、
② Pでないか、または、Qでないか、または、Pでも、Qでもない。
といふことである。
然るに、
(03)
②(PとQが、同時に「真(本当)」になる)といふことはない。
といふことは、
③ Pが「真(本当)」であるならば、Qは「偽(ウソ)」であり、
④ Qが「真(本当)」であるならば、Pは「偽(ウソ)」である。
といふことである。
然るに、
(04)
③ Pが「真(本当)」であるならば、Qは「偽(ウソ)」であり、
④ Qが「真(本当)」であるならば、Pは「偽(ウソ)」である。
といふことは、
③ Pであるならば、Qではなく、
④ Qであるならば、Pではない。
といふことである。
従って、
(01)~(04)により、
(05)
「日本語」で考へれば、「簡単に分る」通り、
①(Pであって、尚且つ、Qである)といふことはない。
② Pでないか、または、Qでないか、または、Pでも、Qでもない。
③ Pであるならば、Qでない。
④ Qであるならば、Pでない。
に於いて
①=②=③=④ である。
従って、
(05)により、
(06)
「命題計算」の「記号」で書くと、
① ~(P& Q)
② ~P∨~Q
③ P→~Q
④ Q→~P
に於いて
①=②=③=④ である。
然るに、
(07)
(ⅰ)
1 (1) ~( P& Q) A
2 (2) ~(~P∨~Q) A
3 (3) ~P A
3 (4) ~P∨~Q 3∨I
23 (5) ~(~P∨~Q)&(~P∨~Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
8(8) ~Q A
8(9) ~P∨~Q 8∨I
2 8(ア) ~(~P∨~Q)&(~P∨~Q) 28&I
2 (イ) ~~Q 8アRAA
2 (ウ) Q イDN
2 (エ) P& Q 7ウ&I
12 (オ) ~( P& Q)&( P& Q) 1エ&I
1 (カ)~~(~P∨~Q) 2オRAA
1 (キ) ~P∨~Q 1DN
(ⅱ)
1 (1) ~P∨~Q A
2 (2) P& Q A
3 (3) ~P A
23 (4) P 2
23 (5) ~P& P 34&I
3 (6) ~(P& Q) 25RAA
7(7) ~Q A
2 (8) Q 2&E
2 7(9) ~Q&Q 78
7(ア) ~(P& Q) 29RAA
1 (イ) ~(P& Q) 1367ア∨E
然るに、
(08)
(ⅰ)
1 (1)~(P& Q) A
2 (2) P A
3(3) Q A
23(4) P& Q 23&I
123(5)~(P& Q)&
(P& Q) 14&I
12 (6) ~Q 35RAA
1 (7) P→~Q 26CP
(ⅲ)
1 (1) P→~Q A
2 (2) P& Q A
2 (3) P 2&E
12 (4) ~Q 13MPP
2 (5) Q 2&E
12 (6) ~Q&Q 45&I
1 (7)~(P& Q) 26RAA
然るに、
(09)
(ⅰ)
1 (1)~(P& Q) A
2 (2) Q A
3(3) P A
23(4) P& Q 23&I
123(5)~〔P& Q〕&
〔P& Q〕 14&I
12 (6) ~P 35RAA
1 (7) Q→~P 26CP
(ⅳ)
1 (1) Q→~P A
2 (2) P& Q A
2 (3) Q 2&E
12 (4) ~P 13MPP
2 (5) P 2&E
12 (6) P&~P 45&I
1 (7)~(P& Q) 26RAA
従って、
(05)~(09)により、
(10)
① ~(P& Q)≡(Pであって、尚且つ、Qである)といふことはない。
② ~P∨~Q ≡ Pでないか、または、Qでないか、または、その両方である。
③ P→~Q ≡ Pであるならば、Qでない。
④ Q→~P ≡ Qであるならば、Pでない。
に於いて、
「日本語」で考へても、「命題論理」で計算しても、
①=②=③=④ である。
然るに、
(11)
(ⅰ)
1 (1)Q A
2(2)Q→~P A
12(3) ~P 12MPP
従って、
(11)により、
(12)
① Q,Q→~P├ ~P
といふ「連式(Sequent)」は、「妥当」である。
然るに、
(10)により、
(13)
「番号」を付け直すと、
① Q→~P ≡ Qであるならば、Pでない。
② ~(P& Q)≡(Pであって、尚且つ、Qである)といふことはない。
に於いて、
①=② である。
従って、
(12)(13)により、
(14)
① Q, Q→~P ├ ~P
② Q,~(P& Q)├ ~P
といふ「連式(Sequents)」は、「妥当」である。
従って、
(14)により、
(15)
「~」=「不」
「&」=「而」
「Q」=「食馬(馬を養ふ)。」
「P」=「知其能千里(その能の千里なるを知る)。」
とするならば、
① 食馬、不(知其能千里而食)。故、不(知其能千里)。
といふ「連式(Sequent)」は、「妥当」である。
然るに、
(16)
② 食レ馬者、不下知二其能千里一食上。
② 馬を食ふ者は、其の能の千里なるを知りて食はず。
② 馬の飼い主は、自分の馬が千里も走る能力があることを知って飼うことをしない。
(旺文社、漢文の基礎、1973年、153・154頁改)
然るに、
(17)
言ふまでもなく、
②(馬を食ふ者は、馬を)食ふ。
従って、
(15)(16)(17)により、
(18)
② 食馬者、不(知其能千里而食)。故に、不(知其能千里)。
といふ「連式(Sequent)」は、「妥当」である。
従って、
(16)(17)(18)により、
(19)
② 馬を食ふ者は、其の能の千里なるを知りて食はず。故に、其の能の千里なるを知らず。
といふ「連式(Sequent)」は、「妥当」である。
従って、
(16)(19)により、
(20)
② 食レ馬者、不下知二其能千里一食上。
といふ「漢文」は、
② 馬を養ふ者は、其の能の千里なるを知らずに、馬を養ふ。
といふ、「意味」になる。
然るに、
(21)
① 食レ馬者、不下知二其能千里一食上。
② 知ニ其能千里一而食レ食。
この ①・② の読み方を書き下し文になおすと、どちらも「その能の千里なるを知ってしかし食わず」であって同じである。だから書き下し文を見ただけでは、①か②か どちらかという判断はできない。
それでは、意味はどうなるかと、全く違うのである。すなわち、次のようになる。
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
②「その(馬の)働きが一日に千里も走れるほどであることを知っておりながら、〈それ相応に飼育しない〉」
(二畳庵主人、漢文法基礎、1984年10月、390頁)
然るに、
(22)
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
②「其の能の千里なるを知らずに、馬を養ふ。」
に於いて、
①=② ではない。
従って、
(20)(21)(22)により、
(23)
① 食レ馬者、不下知二其能千里一食上。
といふ「漢文」は、
②「其の能の千里なるを知らずに、馬を養ふ。」
といふ「意味」であって、
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
といふ「意味」でない。
然るに、
(21)(23)により、
(24)
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
から、
①「それ相応に」といふ「副詞句」を除くと、
①「馬を飼育する者は、その(馬の)働きが一日に千里も走れるのを知らないし、飼育しない。」
といふことになる。
然るに、
(25)
①「馬を飼育する者は、馬を、飼育しない。」
といふのは、「矛盾」である。
従って、
(24)(25)により、
(26)
①「馬を飼育する者は、馬を、飼育しない。」
といふ「矛盾」を「糊塗する」する上で、
①「馬を飼育する者は、その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
といふ「訳文」から、
①「それ相応に」といふ「副詞句」を除くことは、出来ない。
令和02年08月21日、毛利太。
「二畳庵主人(加地伸行 先生)」の「(ド・モルガンの法則、に対する)誤解」について。
(01)
「漢文」とはなにか
受験参考書をはるかに超え出たZ会伝説の名著、待望の新版! ― 中略 ―、
基礎とはなにか。二畳庵先生が考える基礎ということばは、基礎医学とか、基礎物理研究所といったことばで使われているような意味なんだ。(中略)基礎というのは、初歩的知識に対して、いったいそれはいかなる意味をもっているのか、ということ。つまりその本質を反省することなのである。初歩的知識を確認したり、初歩的知識を覚える、といったことではなく、その初歩的知識を材料にして、それのもっている本質を根本的に反省するということなのだ。――<本書より>
※本書は1984年10月に増進会出版社より刊行された『漢文法基礎』(新版)を大幅に改訂したものです。
(02)
(ⅰ)
1 (1)~〔P& Q〕 A
2 (2) Q A
3(3) P A
23(4) P& Q 23&I
123(5)~〔P& Q〕&
〔P& Q〕 14&I
12 (6) ~P 35RAA
1 (7) Q→~P 26CP
(ⅱ)
1 (1) Q→~P A
2 (2) P& Q A
2 (3) Q 2&E
12 (4) ~P 13MPP
2 (5) P 2&E
12 (6) P&~P 45&I
1 (7)~〔P& Q〕 26RAA
従って、
(02)により、
(03)
① ~〔P& Q〕≡〔Pであって、尚且つ、Qである〕といふことはない。
② 〔Q→~P〕≡〔Qであるならば、Pでない。〕
に於いて、
①=② である。
然るに、
(04)
① ~〔P& Q〕≡(Pであって、尚且つ、Qである)といふことはない。
② Q→~P ≡ Qであるならば、Pでない。
に於いて、
「~」=「不」
「P」=「知(其能千里)」
「&」=「而」
「Q」=「食(養ふ)」
「→」=「ならば」
であるとする。
cf.
「食」は「養う」の「意味」である。
従って、
(03)(04)により、
(05)
① 不〔知(其能千里)而食〕。
② 食ならば不〔知(其能千里)〕。
に於いて、
①=② である。
然るに、
(06)
① 不〔知(其能千里)而食〕。
② 食ならば不〔知(其能千里)〕。
に於いて、
不〔 〕⇒〔 〕不
知( )⇒( )知
といふ「移動」を行ひ、「平仮名」を加へると、
① 〔(其の能の千里なるを)知りて食は〕ず。
② 食ふならば〔(其の能の千里なるを)知ら〕ず。
に於いて、
①=② である。
然るに、
(07)
① 食レ馬者、不下知二其能千里一食上。
① 馬を食ふ者は、其の能の千里なるを知りて食はず。
① 馬の飼い主は、自分の馬が千里も走る能力があることを知って飼うことをしない。
(旺文社、漢文の基礎、1973年、153・154頁改)
然るに、
(08)
言ふまでもなく、
②(馬を食ふ者は、馬を)食ふ。
従って、
(06)(07)(08)により、
(09)
① 食馬者、不知其能千里而食。
といふ「漢文」は、
② 馬を養ふ者は、其の能の千里なるを知らずに、馬を養ふ。
といふ、「意味」になる。
然るに、
(10)
① 食レ馬者、不下知二其能千里一食上。
② 知ニ其能千里一而食レ食。
この ①・② の読み方を書き下し文になおすと、どちらも「その能の千里なるを知ってしかし食わず」であって同じである。だから書き下し文を見ただけでは、①か②か どちらかという判断はできない。
それでは、意味はどうなるかと、全く違うのである。すなわち、次のようになる。
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
②「その(馬の)働きが一日に千里も走れるほどであることを知っておりながら、〈それ相応に飼育しない〉」
(二畳庵主人、漢文法基礎、1984年10月、390頁)
然るに、
(11)
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
といふのであれば、
① 食馬者、不知其能千里而_食。
ではなく、
① 食馬者、不知其能千里而不食。
でなければ、ならない。
然るに、
(07)(10)により、
(12)
「原文」は、
① 食馬者、不知其能千里而不食。
ではなく、
① 食馬者、不知其能千里而_食。
である。
従って、
(10)(11)(12)により、
(13)
① 食レ馬者、不下知二其能千里一食上。
であれば、
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
といふ「意味」になるといふ、「二畳庵主人(加地伸行 先生)」の「説明」は、「マチガイ」である。
(14)
(ⅲ)
1 (1)~(P∨Q) A
2 (2) P A
2 (3) P∨Q 2∨I
12 (4)~(P∨Q)&(P∨Q) 13&I
1 (5) ~P 24RAA
6(6) Q A
6(7) P∨Q 6∨I
1 6(8)~(P∨Q)&(P∨Q) 17&I
1 (9) ~Q 68RAA
1 (ア)~P&~Q 59&I
(ⅳ)
1 (1) ~P&~Q A
2 (2) P∨ Q A
1 (3) ~P 1&E
4 (4) P A
「漢文」とはなにか
受験参考書をはるかに超え出たZ会伝説の名著、待望の新版! ― 中略 ―、
基礎とはなにか。二畳庵先生が考える基礎ということばは、基礎医学とか、基礎物理研究所といったことばで使われているような意味なんだ。(中略)基礎というのは、初歩的知識に対して、いったいそれはいかなる意味をもっているのか、ということ。つまりその本質を反省することなのである。初歩的知識を確認したり、初歩的知識を覚える、といったことではなく、その初歩的知識を材料にして、それのもっている本質を根本的に反省するということなのだ。――<本書より>
※本書は1984年10月に増進会出版社より刊行された『漢文法基礎』(新版)を大幅に改訂したものです。
(02)
(ⅰ)
1 (1)~〔P& Q〕 A
2 (2) Q A
3(3) P A
23(4) P& Q 23&I
123(5)~〔P& Q〕&
〔P& Q〕 14&I
12 (6) ~P 35RAA
1 (7) Q→~P 26CP
(ⅱ)
1 (1) Q→~P A
2 (2) P& Q A
2 (3) Q 2&E
12 (4) ~P 13MPP
2 (5) P 2&E
12 (6) P&~P 45&I
1 (7)~〔P& Q〕 26RAA
従って、
(02)により、
(03)
① ~〔P& Q〕≡〔Pであって、尚且つ、Qである〕といふことはない。
② 〔Q→~P〕≡〔Qであるならば、Pでない。〕
に於いて、
①=② である。
然るに、
(04)
① ~〔P& Q〕≡(Pであって、尚且つ、Qである)といふことはない。
② Q→~P ≡ Qであるならば、Pでない。
に於いて、
「~」=「不」
「P」=「知(其能千里)」
「&」=「而」
「Q」=「食(養ふ)」
「→」=「ならば」
であるとする。
cf.
「食」は「養う」の「意味」である。
従って、
(03)(04)により、
(05)
① 不〔知(其能千里)而食〕。
② 食ならば不〔知(其能千里)〕。
に於いて、
①=② である。
然るに、
(06)
① 不〔知(其能千里)而食〕。
② 食ならば不〔知(其能千里)〕。
に於いて、
不〔 〕⇒〔 〕不
知( )⇒( )知
といふ「移動」を行ひ、「平仮名」を加へると、
① 〔(其の能の千里なるを)知りて食は〕ず。
② 食ふならば〔(其の能の千里なるを)知ら〕ず。
に於いて、
①=② である。
然るに、
(07)
① 食レ馬者、不下知二其能千里一食上。
① 馬を食ふ者は、其の能の千里なるを知りて食はず。
① 馬の飼い主は、自分の馬が千里も走る能力があることを知って飼うことをしない。
(旺文社、漢文の基礎、1973年、153・154頁改)
然るに、
(08)
言ふまでもなく、
②(馬を食ふ者は、馬を)食ふ。
従って、
(06)(07)(08)により、
(09)
① 食馬者、不知其能千里而食。
といふ「漢文」は、
② 馬を養ふ者は、其の能の千里なるを知らずに、馬を養ふ。
といふ、「意味」になる。
然るに、
(10)
① 食レ馬者、不下知二其能千里一食上。
② 知ニ其能千里一而食レ食。
この ①・② の読み方を書き下し文になおすと、どちらも「その能の千里なるを知ってしかし食わず」であって同じである。だから書き下し文を見ただけでは、①か②か どちらかという判断はできない。
それでは、意味はどうなるかと、全く違うのである。すなわち、次のようになる。
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
②「その(馬の)働きが一日に千里も走れるほどであることを知っておりながら、〈それ相応に飼育しない〉」
(二畳庵主人、漢文法基礎、1984年10月、390頁)
然るに、
(11)
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
といふのであれば、
① 食馬者、不知其能千里而_食。
ではなく、
① 食馬者、不知其能千里而不食。
でなければ、ならない。
然るに、
(07)(10)により、
(12)
「原文」は、
① 食馬者、不知其能千里而不食。
ではなく、
① 食馬者、不知其能千里而_食。
である。
従って、
(10)(11)(12)により、
(13)
① 食レ馬者、不下知二其能千里一食上。
であれば、
①「その(馬の)働きが一日に千里も走れるのを知らないし、それ相応に飼育しない」
といふ「意味」になるといふ、「二畳庵主人(加地伸行 先生)」の「説明」は、「マチガイ」である。
(14)
(ⅲ)
1 (1)~(P∨Q) A
2 (2) P A
2 (3) P∨Q 2∨I
12 (4)~(P∨Q)&(P∨Q) 13&I
1 (5) ~P 24RAA
6(6) Q A
6(7) P∨Q 6∨I
1 6(8)~(P∨Q)&(P∨Q) 17&I
1 (9) ~Q 68RAA
1 (ア)~P&~Q 59&I
(ⅳ)
1 (1) ~P&~Q A
2 (2) P∨ Q A
1 (3) ~P 1&E
4 (4) P A
1 4 (5) ~P&P 34&I
4 (6)~(~P&~Q) 15RAA
1 (7) ~Q 1&E
8(8) Q A
1 8(9) ~Q&Q 78&I
8(ア)~(~P&~Q) 19RAA
2 (イ)~(~P&~Q) 2468ア∨E
4 (6)~(~P&~Q) 15RAA
1 (7) ~Q 1&E
8(8) Q A
1 8(9) ~Q&Q 78&I
8(ア)~(~P&~Q) 19RAA
2 (イ)~(~P&~Q) 2468ア∨E
12 (ウ) (~P&~Q)&
~(~P&~Q) 1イ&I
1 (エ) ~(P∨ Q) 2ウRAA
従って、
(14)により、
(15)
③ ~(P∨ Q)≡(Pであるか、または、Qである)といふことはない。
④ ~P&~Q ≡ Pでもないし、Qでもない。
に於いて、
③=④ である(ド・モルガンの法則)。
従って、
(15)により、
(16)
③(字を書くか、または、書を読まない)といふことはない。
④ 字も書かなければ、 書も読まない。
に於いて、
③=④ である。
然るに、
(17)
④ 字も書かなければ、書も読まない。
といふのであれば、「漢文」は、
④ 不レ書レ字、不レ読レ書。
であって、
④ 不二書レ字読一レ書。
ではない。
然るに、
(18)
入門編で述べたもっと簡単な例でいうと、たとえば、
③ 書レ字不レ読レ書。
④ 不二書レ字読一レ書。
③ は「字は書くけれども、本は読まない。」
④ は「字も書かなければ、書も読まない。」ということで、ここでも「不」の管到のちがいがよくでている。
(二畳庵主人、漢文法基礎、1984年10月、390頁)
従って、
(17)(18)により、
(19)
「二畳庵主人(加地伸行 先生)」は、要するに、
④ 不レ書レ字、不レ読レ書。
といふ「漢文」と、
④ 不二書レ字読一レ書。
といふ「漢文」とを、「混同」していて、このことは、
③ ~(P& Q)≡(Pであって、尚且つ、Qである)といふことはない。
④ ~P&~Q ≡ Pでもないし、Qでもない。
に於いて、
③=④ である(「ド・モルガンの法則」ではない)。
と、見做してゐる。
といふことに、「等しい」。
然るに、
(20)
(ⅰ)
1 (1) ~( P& Q) A
2 (2) ~(~P∨~Q) A
3 (3) ~P A
3 (4) ~P∨~Q 3∨I
23 (5) ~(~P∨~Q)&(~P∨~Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
8(8) ~Q A
8(9) ~P∨~Q 8∨I
2 8(ア) ~(~P∨~Q)&(~P∨~Q) 28&I
2 (イ) ~~Q 8アRAA
2 (ウ) Q イDN
2 (エ) P& Q 7ウ&I
12 (オ) ~( P& Q)&( P& Q) 1エ&I
1 (カ)~~(~P∨~Q) 2オRAA
1 (キ) ~P∨~Q 1DN
(ⅱ)
1 (1) ~P∨~Q A
2 (2) P& Q A
3 (3) ~P A
23 (4) P 2
23 (5) ~P& P 34&I
3 (6) ~(P& Q) 25RAA
7(7) ~Q A
2 (8) Q 2&E
2 7(9) ~Q&Q 78
7(ア) ~(P& Q) 29RAA
1 (イ) ~(P& Q) 1367ア∨E
従って、
(20)により、
(21)
① ~(P& Q)≡(Pであって、尚且つ、Qである)といふことはない。
② ~P∨~Q ≡ Pでないか、または、Qでないか、または、その両方である。
に於いて、
①=② である(ド・モルガンの法則)。
従って、
(19)(21)により、
(22)
「番号」を付け直すと、
① ~(P& Q)≡(Pであって、尚且つ、Qである)といふことはない。
② ~P∨~Q ≡ Pでないか、または、Qでないか、または、その両方である。
③ ~P&~Q ≡ Pでもないし、Qでもない。
に於いて、「ド・モルガンの法則」としては、
①=② こそが「正しい」ものの、
「二畳庵主人(加地伸行 先生)」の場合は、
①=③ である。
といふ風に、「誤解」してゐる。
令和02年08月21日、毛利太。
~(~P&~Q) 1イ&I
1 (エ) ~(P∨ Q) 2ウRAA
従って、
(14)により、
(15)
③ ~(P∨ Q)≡(Pであるか、または、Qである)といふことはない。
④ ~P&~Q ≡ Pでもないし、Qでもない。
に於いて、
③=④ である(ド・モルガンの法則)。
従って、
(15)により、
(16)
③(字を書くか、または、書を読まない)といふことはない。
④ 字も書かなければ、 書も読まない。
に於いて、
③=④ である。
然るに、
(17)
④ 字も書かなければ、書も読まない。
といふのであれば、「漢文」は、
④ 不レ書レ字、不レ読レ書。
であって、
④ 不二書レ字読一レ書。
ではない。
然るに、
(18)
入門編で述べたもっと簡単な例でいうと、たとえば、
③ 書レ字不レ読レ書。
④ 不二書レ字読一レ書。
③ は「字は書くけれども、本は読まない。」
④ は「字も書かなければ、書も読まない。」ということで、ここでも「不」の管到のちがいがよくでている。
(二畳庵主人、漢文法基礎、1984年10月、390頁)
従って、
(17)(18)により、
(19)
「二畳庵主人(加地伸行 先生)」は、要するに、
④ 不レ書レ字、不レ読レ書。
といふ「漢文」と、
④ 不二書レ字読一レ書。
といふ「漢文」とを、「混同」していて、このことは、
③ ~(P& Q)≡(Pであって、尚且つ、Qである)といふことはない。
④ ~P&~Q ≡ Pでもないし、Qでもない。
に於いて、
③=④ である(「ド・モルガンの法則」ではない)。
と、見做してゐる。
といふことに、「等しい」。
然るに、
(20)
(ⅰ)
1 (1) ~( P& Q) A
2 (2) ~(~P∨~Q) A
3 (3) ~P A
3 (4) ~P∨~Q 3∨I
23 (5) ~(~P∨~Q)&(~P∨~Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
8(8) ~Q A
8(9) ~P∨~Q 8∨I
2 8(ア) ~(~P∨~Q)&(~P∨~Q) 28&I
2 (イ) ~~Q 8アRAA
2 (ウ) Q イDN
2 (エ) P& Q 7ウ&I
12 (オ) ~( P& Q)&( P& Q) 1エ&I
1 (カ)~~(~P∨~Q) 2オRAA
1 (キ) ~P∨~Q 1DN
(ⅱ)
1 (1) ~P∨~Q A
2 (2) P& Q A
3 (3) ~P A
23 (4) P 2
23 (5) ~P& P 34&I
3 (6) ~(P& Q) 25RAA
7(7) ~Q A
2 (8) Q 2&E
2 7(9) ~Q&Q 78
7(ア) ~(P& Q) 29RAA
1 (イ) ~(P& Q) 1367ア∨E
従って、
(20)により、
(21)
① ~(P& Q)≡(Pであって、尚且つ、Qである)といふことはない。
② ~P∨~Q ≡ Pでないか、または、Qでないか、または、その両方である。
に於いて、
①=② である(ド・モルガンの法則)。
従って、
(19)(21)により、
(22)
「番号」を付け直すと、
① ~(P& Q)≡(Pであって、尚且つ、Qである)といふことはない。
② ~P∨~Q ≡ Pでないか、または、Qでないか、または、その両方である。
③ ~P&~Q ≡ Pでもないし、Qでもない。
に於いて、「ド・モルガンの法則」としては、
①=② こそが「正しい」ものの、
「二畳庵主人(加地伸行 先生)」の場合は、
①=③ である。
といふ風に、「誤解」してゐる。
令和02年08月21日、毛利太。
2020年8月20日木曜日
「漢文」に「括弧は有らざる可からず」。
(01)
(ⅰ)
1 (1)~〔P& Q〕 A
2 (2) P A
3(3) Q A
23(4) P& Q 23&I
123(5)~〔P& Q〕&
〔P& Q〕 14&I
12 (6) ~Q 35RAA
1 (7) P→~Q 26CP
(ⅱ)
1 (1) P→~Q A
2 (2) P& Q A
2 (3) P 2&E
12 (4) ~Q 13MPP
2 (5) Q 2&E
12 (6) ~Q&Q 45&I
1 (7)~〔P& Q〕 26RAA
従って、
(01)により、
(02)
① ~〔P& Q〕
② P→~Q
に於いて、
①=② である。
といふことは、「論理(学)的」に、「正しい」。
然るに、
(03)
① ~〔P& Q〕
② P→~Q
といふ「論理式」は、
① 不〔P而Q〕
② 苟P則不Q
といふ「漢文」に、「相当」する。
従って、
(02)(03)により、
(04)
① 不〔P而Q〕
② 苟P則不Q
に於いて、
①=② である。
然るに、
(05)
P=為(児孫)
Q=買(美田)
とする。
従って、
(04)(05)により、
(06)
① 不〔為(児孫)而買(美田)〕。
② 苟為(児孫)則不〔買(美田)〕。
に於いて、
①=② である。
然るに、
(07)
① 不〔為(児孫)而買(美田)〕。
② 苟為(児孫)則不〔買(美田)〕。
に於いて、
① 而 と、
② 則 は、「省略」出来る。
従って、
(07)に於いて、
(08)
① 不〔為(児孫)買(美田)〕。
② 苟為(児孫)不〔買(美田)〕。
に於いて、
①=② である。
然るに、
(09)
① 不〔為(児孫)買(美田)〕。
② 苟為(児孫)不〔買(美田)〕。
に於いて、
□〔 〕⇒〔 〕□
□( )⇒( )□
といふ「移動」を行ひ、「平仮名」を加へると、
それぞれ、
①〔(児孫の)為に(美田を)買は〕不。
② 苟くも(児孫の)為ならば〔(美田を)買は〕不。
といふ「訓読」になる。
然るに、
(10)
漢語における語順は、国語と大きく違っているところがある。すなわち、その補足構造における語順は、国語とは全く反対である。しかし、訓読は、国語の語順に置きかえて読むことが、その大きな原則となっている。それでその補足構造によっている文も、返り点によって、国語としての語順が示されている(鈴木直治、中国語と漢文、1975年、296頁)。
従って、
(09)(10)により、
(11)
① 不〔為(児孫)而買(美田)〕。⇔
①〔(児孫の)為に(美田を)買は〕不。
② 苟為(児孫)則不〔買(美田)〕。⇔
② 苟くも(児孫の)為ならば〔(美田を)買は〕不。
に於ける、
①〔( )( )〕
①〔( )( )〕
②( )〔( )〕
②( )〔( )〕
といふ「括弧」は、それぞれ、
① ②「漢文の補足構造」と、同時に、
① ②「訓読の補足構造」と、同時に、「訓読の語順」を、表してゐる。
然るに、
(01)~(08)により、
(12)
① 不〔為(児孫)買(美田)〕。
② 苟為(児孫)不〔買(美田)〕。
に於いて、
①=② である。
といふことは、
(ⅰ)
1 (1)~〔P& Q〕 A
2 (2) P A
3(3) Q A
23(4) P& Q 23&I
123(5)~〔P& Q〕&
〔P& Q〕 14&I
12 (6) ~Q 35RAA
1 (7) P→~Q 26CP
(ⅱ)
1 (1) P→~Q A
2 (2) P& Q A
2 (3) P 2&E
12 (4) ~Q 13MPP
2 (5) Q 2&E
12 (6) ~Q&Q 45&I
1 (7)~〔P& Q〕 26RAA
といふ「命題計算(propositional calculus)」として、「正しい」。
然るに、
(13)
① 児孫の為に、美田を買はず。
② 苟くも(仮にも)、児孫の為ならば美田を買はない。
に於いて、
①=② である。
といふことは、「日本語」として、「正しい」。
従って、
(10)~(13)により、
(14)
(ⅰ)漢文も、日本語も、「論理(学)的な言語」である。
(ⅱ)漢文の補足構造における語順は、国語とは全く反対である。
といふ「2つの命題」が「真」であるならば、
① 不為児孫買美田。
② 苟為児孫不買美田。
といふ「漢文」には、
① 不〔為(児孫)買(美田)〕。
② 苟為(児孫)不〔買(美田)〕。
といふ「括弧」が、無ければ、ならない。
令和02年08月20日、毛利太。
(ⅰ)
1 (1)~〔P& Q〕 A
2 (2) P A
3(3) Q A
23(4) P& Q 23&I
123(5)~〔P& Q〕&
〔P& Q〕 14&I
12 (6) ~Q 35RAA
1 (7) P→~Q 26CP
(ⅱ)
1 (1) P→~Q A
2 (2) P& Q A
2 (3) P 2&E
12 (4) ~Q 13MPP
2 (5) Q 2&E
12 (6) ~Q&Q 45&I
1 (7)~〔P& Q〕 26RAA
従って、
(01)により、
(02)
① ~〔P& Q〕
② P→~Q
に於いて、
①=② である。
といふことは、「論理(学)的」に、「正しい」。
然るに、
(03)
① ~〔P& Q〕
② P→~Q
といふ「論理式」は、
① 不〔P而Q〕
② 苟P則不Q
といふ「漢文」に、「相当」する。
従って、
(02)(03)により、
(04)
① 不〔P而Q〕
② 苟P則不Q
に於いて、
①=② である。
然るに、
(05)
P=為(児孫)
Q=買(美田)
とする。
従って、
(04)(05)により、
(06)
① 不〔為(児孫)而買(美田)〕。
② 苟為(児孫)則不〔買(美田)〕。
に於いて、
①=② である。
然るに、
(07)
① 不〔為(児孫)而買(美田)〕。
② 苟為(児孫)則不〔買(美田)〕。
に於いて、
① 而 と、
② 則 は、「省略」出来る。
従って、
(07)に於いて、
(08)
① 不〔為(児孫)買(美田)〕。
② 苟為(児孫)不〔買(美田)〕。
に於いて、
①=② である。
然るに、
(09)
① 不〔為(児孫)買(美田)〕。
② 苟為(児孫)不〔買(美田)〕。
に於いて、
□〔 〕⇒〔 〕□
□( )⇒( )□
といふ「移動」を行ひ、「平仮名」を加へると、
それぞれ、
①〔(児孫の)為に(美田を)買は〕不。
② 苟くも(児孫の)為ならば〔(美田を)買は〕不。
といふ「訓読」になる。
然るに、
(10)
漢語における語順は、国語と大きく違っているところがある。すなわち、その補足構造における語順は、国語とは全く反対である。しかし、訓読は、国語の語順に置きかえて読むことが、その大きな原則となっている。それでその補足構造によっている文も、返り点によって、国語としての語順が示されている(鈴木直治、中国語と漢文、1975年、296頁)。
従って、
(09)(10)により、
(11)
① 不〔為(児孫)而買(美田)〕。⇔
①〔(児孫の)為に(美田を)買は〕不。
② 苟為(児孫)則不〔買(美田)〕。⇔
② 苟くも(児孫の)為ならば〔(美田を)買は〕不。
に於ける、
①〔( )( )〕
①〔( )( )〕
②( )〔( )〕
②( )〔( )〕
といふ「括弧」は、それぞれ、
① ②「漢文の補足構造」と、同時に、
① ②「訓読の補足構造」と、同時に、「訓読の語順」を、表してゐる。
然るに、
(01)~(08)により、
(12)
① 不〔為(児孫)買(美田)〕。
② 苟為(児孫)不〔買(美田)〕。
に於いて、
①=② である。
といふことは、
(ⅰ)
1 (1)~〔P& Q〕 A
2 (2) P A
3(3) Q A
23(4) P& Q 23&I
123(5)~〔P& Q〕&
〔P& Q〕 14&I
12 (6) ~Q 35RAA
1 (7) P→~Q 26CP
(ⅱ)
1 (1) P→~Q A
2 (2) P& Q A
2 (3) P 2&E
12 (4) ~Q 13MPP
2 (5) Q 2&E
12 (6) ~Q&Q 45&I
1 (7)~〔P& Q〕 26RAA
といふ「命題計算(propositional calculus)」として、「正しい」。
然るに、
(13)
① 児孫の為に、美田を買はず。
② 苟くも(仮にも)、児孫の為ならば美田を買はない。
に於いて、
①=② である。
といふことは、「日本語」として、「正しい」。
従って、
(10)~(13)により、
(14)
(ⅰ)漢文も、日本語も、「論理(学)的な言語」である。
(ⅱ)漢文の補足構造における語順は、国語とは全く反対である。
といふ「2つの命題」が「真」であるならば、
① 不為児孫買美田。
② 苟為児孫不買美田。
といふ「漢文」には、
① 不〔為(児孫)買(美田)〕。
② 苟為(児孫)不〔買(美田)〕。
といふ「括弧」が、無ければ、ならない。
令和02年08月20日、毛利太。
2020年8月19日水曜日
「漢文」に於ける「補足構造」と「括弧」。
(01)
① 我不〔有(兄弟)〕。
に於いて、
不〔 〕⇒〔 〕不
有( )⇒( )有
といふ「移動」を行ひ、「平仮名」を加へると、
① 我不〔有(兄弟)〕⇒
① 我〔(兄弟)有〕不=
① 我に〔(兄弟)有ら〕不=
① 私には、兄弟がゐない。
従って、
(01)により、
(02)
(ⅰ)
「左」から「右」へ読みつつ、
(ⅱ)
① 不 は、〔 〕の中を「読んだ直後に読む」。
① 有 は、( )の中を「読んだ直後に読む」。
ならば、
① 我に〔(兄弟)有ら〕ず。
といふ、「語順」になる。
然るに、
(03)
漢語における語順は、国語と大きく違っているところがある。すなわち、その補足構造における語順は、国語とは全く反対である。しかし、訓読は、国語の語順に置きかえて読むことが、その大きな原則となっている。それでその補足構造によっている文も、返り点によって、国語としての語順が示されている(鈴木直治、中国語と漢文、1975年、296頁)。
従って、
(01)(02)(03)により、
(04)
① 我不〔有(兄弟)〕。
① 我に〔(兄弟)有ら〕ず。
に於ける、
①〔 ( ) 〕
①〔 ( ) 〕
といふ「括弧」は、
①「漢文の補足構造」と、同時に、
①「訓読の補足構造」と、同時に、「訓読の語順」を、表してゐる。
従って、
(04)により、
(05)
① 我不〔有(兄弟)〕⇒
① 我に〔(兄弟)有ら〕ず。
といふ「漢文・訓読」に於いて、「(漢文と訓読の)語順」こそ、「異なる」ものの、「(漢文と訓読の)補足構造」自体は、「同じ」である。
然るに、
(06)
① 我 不 〔 有 ( 兄弟 )〕。
① I don't〔have(brothers)〕.
のやうに、「語順」が「同じ」であるならば、「補足構造(シンタックス)」は「同じ」である。
然るに、
(07)
② I have(no〔brothers)〕.
に於いて、
have( )⇒( )have
no〔 〕⇒〔 〕no
といふ「移動」を行ひ、「英単語」を、「翻訳」すると、
② I have(no〔brothers)〕⇒
② I (〔brothers)have〕no=
② 私には(〔兄弟が)ゐ〕ない。
然るに、
(08)
① I don't〔have(brothers)〕.
② I have(no〔brothers)〕.
に於ける、
①〔 ( ) 〕
②( 〔 ) 〕
に於いて、
① は、「括弧」であるが、
② は、「括弧」ではない。
加へて、
(09)
① I don't三have二brothers一.
② I have二no三brothers一.
に於ける、
① 三 二 一
② 二 三 一
に於いて、
① は、「返り点」であるが、
② は、「返り点」ではない。
(10)
「返り点」は、「縦書き」であれば、「下から上へ、返る点」であるため、
「横書き」であれば、「左(二)から、右(三)へ戻る点」は、「返り点」ではない。
従って、
(03)~(10)により、
(11)
「番号」を付け直すと、
① 我 不 〔 有 ( 兄弟 )〕。
② I don't〔have(brothers)〕.
③ 我に〔(兄弟)有ら〕ず。
④ I have(no〔brothers)〕.
に於いて、「補足構造」に関しては、
①〔 ( ) 〕
②〔 ( ) 〕
③〔 ( ) 〕
であるため、
①=②=③ であって、
唯一、
④( 〔 ) 〕
だけが、「他の3つ」と、「同じ」ではない。
従って、
(11)により、
(12)
「語順が異なること」は、「補足構造(シンタックス)が異なる」ための、「必要条件」であるが、
「語順が異なること」は、「補足構造(シンタックス)が異なる」ための、「十分条件」ではない。
然るに、
(13)
「語順が異なること」よりも、
「構造が異なること」の方が、「重大」なはずである。
従って、
(14)
「語順が異なる」ことは、敢へて、言ふと、
「構造が異なる」ことに比べれば、「どうでも良い」。
然るに、
(15)
そして重野の講演を後れること七年、文化大学の講師を務めていたイギリス人チャンバレン氏も一八八六年『東洋学芸雑誌』第六一号に「支那語読法ノ改良ヲ望ム」を発表し、「疑ハシキハ日本人ノ此支那語ヲ通読スル伝法ナリ、前ヲ後ニ変へ、下ヲ上ニ遡ラシ、本文ニ見へザル語尾ヲ附シ虚辞ヲ黙シ、若クハ再用スル等ハ、漢文ヲ通読スルコトニアランヤ。寧ロ漢文ヲ破砕シテ、其片塊ヲ以テ随意ニ別類ノ一科奇物ヲ増加セリト云フヲ免カレンヤ。」「畢竟日本語ハ日本ノ言序アリ、英語ハ英ノ語次存スルコトは皆々承知セリ、唯支那語ニノミ治外法権ヲ許ルサズシ権内ニ置クハ何ソヤ」(「訓読」論 東アジア漢文世界と日本語、中村春作・市來津由彦・田尻祐一郎・前田勉 共編、2008年、50頁)。
従って、
(14)(15)により、
(16)
「畢竟日本語ハ日本ノ言序アリ、英語ハ英ノ語次存スルコトは皆々承知セリ、唯支那語ニノミ治外法権ヲ許ルサズシ権内ニ置クハ何ソヤ」
といふ風に「主張」してゐる、イギリス人チャンバレン氏は、私に言はせれば、「どうでも良い」ことに、「拘泥」してゐる。
然るに、
(17)
数年前、ある言語学教育関連の新聞の連載のコラムに、西洋文化研究者の発言が載せられていた。誰もが知る、孟浩然の『春眠』「春眠暁を覚えず・・・・・・」の引用から始まるそのコラムでは、なぜ高校の教科書にいまだに漢文訓読があるのかと疑問を呈し、「返り点」をたよりに「上がったり下がったりしながら、シラミつぶしに漢字にたどる」読み方はすでに時代遅れの代物であって、早くこうした状況から脱するべきだと主張する。「どこの国に外国語を母国語の語順で読む国があろう」かと嘆く筆者は、かつては漢文訓読が中国の歴史や文学を学ぶ唯一の手段であり「必要から編み出された苦肉の知恵であった」かもしれないが、いまや中国語を日本にいても学べる時代であり「漢文訓読を卒業するとき」だと主張するのである(「訓読」論 東アジア漢文世界と日本語、中村春作・市來津由彦・田尻祐一郎・前田勉 共編、2008年、1頁)。
従って、
(16)(17)により、
(18)
「どこの国に外国語を母国語の語順で読む国があろう」かと、
嘆く筆者(西洋文化研究者)は、私に言はせれば、「どうでも良い」ことに、「拘泥」してゐる。
(19)
⑤ 是以大學始教、必使學者即凡天下之物、莫不因其已知之理、而益窮之、以求至乎其極。
といふ「純粋漢文(大學、伝五章)」を、「機械翻訳」に掛けると、
⑤ 大学によって初めて教えて、必ず学者のすなわちすべての天下の物、モーがそれのためもう知らない道理を使って、益貧乏なこれ、乎のそれに至るためにきわめて。
となってしまひ、「わけが分からない」。
従って、
(19)により、
(20)
このことは、例へば、
⑤ 是以大學始教、必使學者即凡天下之物、莫不因其已知之理、而益窮之、以求至乎其極。
といふ「純粋漢文」を、
⑤ Shì yǐ dàxué shǐ jiào, bì shǐ xuézhě jí fán tiānxià zhī wù, mòbù yīn qí yǐ zhīzhī lǐ, ér yì qióng zhī, yǐ qiú zhì hū qí jí.
といふ風に、「北京語」で「音読」出来たとしても、「意味自体」は、「チンプンカンプン」である。
といふことを、示してゐる。
従って、
(21)
⑤ 是以大學始教、必使學者即凡天下之物、莫不因其已知之理、而益窮之、以求至乎其極。
といふ「漢文」を、「補足構造」に従って、
⑤ 是以、大學始敎、必使〈學者即(凡天下之物)、莫{不[因(其已知之理)、而益極(之)、以求〔至(乎其極)〕]}〉⇒
⑤ 是以、大學始敎、必〈學者(凡天下之物)即、{[(其已知之理)因、而益(之)極、以〔(乎其極)至〕求]不}莫〉使=
⑤ 是を以て、大學の始敎は、必ず〈學者をして(凡そ天下の物に)即きて、{[(其の已に知るの理に)因って、益々(之を)極め、以て〔(其の極に)至るを〕求め]不るを}莫から〉使む=
⑤ そのため、大學の敎へを始める際には、必ず〈學者をして(凡そ天下の物に)即いて、{[(その學者がすでに知っているの理に)依って、益々(これを)極め、以て〔(その極点に)至ることを〕求め]ないことが}無いやうに〉させる。
といふ風に「訓読」する「読み方」が、
⑤ 是以大學始教、必使學者即凡天下之物、莫不因其已知之理、而益窮之、以求至乎其極。
といふ「漢文」を、
⑤ Shì yǐ dàxué shǐ jiào, bì shǐ xuézhě jí fán tiānxià zhī wù, mòbù yīn qí yǐ zhīzhī lǐ, ér yì qióng zhī, yǐ qiú zhì hū qí jí.
といふ風に「音読」する「読み方」よりも、「劣ってゐる」はずが無い。
令和02年08月19日、毛利太。
① 我不〔有(兄弟)〕。
に於いて、
不〔 〕⇒〔 〕不
有( )⇒( )有
といふ「移動」を行ひ、「平仮名」を加へると、
① 我不〔有(兄弟)〕⇒
① 我〔(兄弟)有〕不=
① 我に〔(兄弟)有ら〕不=
① 私には、兄弟がゐない。
従って、
(01)により、
(02)
(ⅰ)
「左」から「右」へ読みつつ、
(ⅱ)
① 不 は、〔 〕の中を「読んだ直後に読む」。
① 有 は、( )の中を「読んだ直後に読む」。
ならば、
① 我に〔(兄弟)有ら〕ず。
といふ、「語順」になる。
然るに、
(03)
漢語における語順は、国語と大きく違っているところがある。すなわち、その補足構造における語順は、国語とは全く反対である。しかし、訓読は、国語の語順に置きかえて読むことが、その大きな原則となっている。それでその補足構造によっている文も、返り点によって、国語としての語順が示されている(鈴木直治、中国語と漢文、1975年、296頁)。
従って、
(01)(02)(03)により、
(04)
① 我不〔有(兄弟)〕。
① 我に〔(兄弟)有ら〕ず。
に於ける、
①〔 ( ) 〕
①〔 ( ) 〕
といふ「括弧」は、
①「漢文の補足構造」と、同時に、
①「訓読の補足構造」と、同時に、「訓読の語順」を、表してゐる。
従って、
(04)により、
(05)
① 我不〔有(兄弟)〕⇒
① 我に〔(兄弟)有ら〕ず。
といふ「漢文・訓読」に於いて、「(漢文と訓読の)語順」こそ、「異なる」ものの、「(漢文と訓読の)補足構造」自体は、「同じ」である。
然るに、
(06)
① 我 不 〔 有 ( 兄弟 )〕。
① I don't〔have(brothers)〕.
のやうに、「語順」が「同じ」であるならば、「補足構造(シンタックス)」は「同じ」である。
然るに、
(07)
② I have(no〔brothers)〕.
に於いて、
have( )⇒( )have
no〔 〕⇒〔 〕no
といふ「移動」を行ひ、「英単語」を、「翻訳」すると、
② I have(no〔brothers)〕⇒
② I (〔brothers)have〕no=
② 私には(〔兄弟が)ゐ〕ない。
然るに、
(08)
① I don't〔have(brothers)〕.
② I have(no〔brothers)〕.
に於ける、
①〔 ( ) 〕
②( 〔 ) 〕
に於いて、
① は、「括弧」であるが、
② は、「括弧」ではない。
加へて、
(09)
① I don't三have二brothers一.
② I have二no三brothers一.
に於ける、
① 三 二 一
② 二 三 一
に於いて、
① は、「返り点」であるが、
② は、「返り点」ではない。
(10)
「返り点」は、「縦書き」であれば、「下から上へ、返る点」であるため、
「横書き」であれば、「左(二)から、右(三)へ戻る点」は、「返り点」ではない。
従って、
(03)~(10)により、
(11)
「番号」を付け直すと、
① 我 不 〔 有 ( 兄弟 )〕。
② I don't〔have(brothers)〕.
③ 我に〔(兄弟)有ら〕ず。
④ I have(no〔brothers)〕.
に於いて、「補足構造」に関しては、
①〔 ( ) 〕
②〔 ( ) 〕
③〔 ( ) 〕
であるため、
①=②=③ であって、
唯一、
④( 〔 ) 〕
だけが、「他の3つ」と、「同じ」ではない。
従って、
(11)により、
(12)
「語順が異なること」は、「補足構造(シンタックス)が異なる」ための、「必要条件」であるが、
「語順が異なること」は、「補足構造(シンタックス)が異なる」ための、「十分条件」ではない。
然るに、
(13)
「語順が異なること」よりも、
「構造が異なること」の方が、「重大」なはずである。
従って、
(14)
「語順が異なる」ことは、敢へて、言ふと、
「構造が異なる」ことに比べれば、「どうでも良い」。
然るに、
(15)
そして重野の講演を後れること七年、文化大学の講師を務めていたイギリス人チャンバレン氏も一八八六年『東洋学芸雑誌』第六一号に「支那語読法ノ改良ヲ望ム」を発表し、「疑ハシキハ日本人ノ此支那語ヲ通読スル伝法ナリ、前ヲ後ニ変へ、下ヲ上ニ遡ラシ、本文ニ見へザル語尾ヲ附シ虚辞ヲ黙シ、若クハ再用スル等ハ、漢文ヲ通読スルコトニアランヤ。寧ロ漢文ヲ破砕シテ、其片塊ヲ以テ随意ニ別類ノ一科奇物ヲ増加セリト云フヲ免カレンヤ。」「畢竟日本語ハ日本ノ言序アリ、英語ハ英ノ語次存スルコトは皆々承知セリ、唯支那語ニノミ治外法権ヲ許ルサズシ権内ニ置クハ何ソヤ」(「訓読」論 東アジア漢文世界と日本語、中村春作・市來津由彦・田尻祐一郎・前田勉 共編、2008年、50頁)。
従って、
(14)(15)により、
(16)
「畢竟日本語ハ日本ノ言序アリ、英語ハ英ノ語次存スルコトは皆々承知セリ、唯支那語ニノミ治外法権ヲ許ルサズシ権内ニ置クハ何ソヤ」
といふ風に「主張」してゐる、イギリス人チャンバレン氏は、私に言はせれば、「どうでも良い」ことに、「拘泥」してゐる。
然るに、
(17)
数年前、ある言語学教育関連の新聞の連載のコラムに、西洋文化研究者の発言が載せられていた。誰もが知る、孟浩然の『春眠』「春眠暁を覚えず・・・・・・」の引用から始まるそのコラムでは、なぜ高校の教科書にいまだに漢文訓読があるのかと疑問を呈し、「返り点」をたよりに「上がったり下がったりしながら、シラミつぶしに漢字にたどる」読み方はすでに時代遅れの代物であって、早くこうした状況から脱するべきだと主張する。「どこの国に外国語を母国語の語順で読む国があろう」かと嘆く筆者は、かつては漢文訓読が中国の歴史や文学を学ぶ唯一の手段であり「必要から編み出された苦肉の知恵であった」かもしれないが、いまや中国語を日本にいても学べる時代であり「漢文訓読を卒業するとき」だと主張するのである(「訓読」論 東アジア漢文世界と日本語、中村春作・市來津由彦・田尻祐一郎・前田勉 共編、2008年、1頁)。
従って、
(16)(17)により、
(18)
「どこの国に外国語を母国語の語順で読む国があろう」かと、
嘆く筆者(西洋文化研究者)は、私に言はせれば、「どうでも良い」ことに、「拘泥」してゐる。
(19)
⑤ 是以大學始教、必使學者即凡天下之物、莫不因其已知之理、而益窮之、以求至乎其極。
といふ「純粋漢文(大學、伝五章)」を、「機械翻訳」に掛けると、
⑤ 大学によって初めて教えて、必ず学者のすなわちすべての天下の物、モーがそれのためもう知らない道理を使って、益貧乏なこれ、乎のそれに至るためにきわめて。
となってしまひ、「わけが分からない」。
従って、
(19)により、
(20)
このことは、例へば、
⑤ 是以大學始教、必使學者即凡天下之物、莫不因其已知之理、而益窮之、以求至乎其極。
といふ「純粋漢文」を、
⑤ Shì yǐ dàxué shǐ jiào, bì shǐ xuézhě jí fán tiānxià zhī wù, mòbù yīn qí yǐ zhīzhī lǐ, ér yì qióng zhī, yǐ qiú zhì hū qí jí.
といふ風に、「北京語」で「音読」出来たとしても、「意味自体」は、「チンプンカンプン」である。
といふことを、示してゐる。
従って、
(21)
⑤ 是以大學始教、必使學者即凡天下之物、莫不因其已知之理、而益窮之、以求至乎其極。
といふ「漢文」を、「補足構造」に従って、
⑤ 是以、大學始敎、必使〈學者即(凡天下之物)、莫{不[因(其已知之理)、而益極(之)、以求〔至(乎其極)〕]}〉⇒
⑤ 是以、大學始敎、必〈學者(凡天下之物)即、{[(其已知之理)因、而益(之)極、以〔(乎其極)至〕求]不}莫〉使=
⑤ 是を以て、大學の始敎は、必ず〈學者をして(凡そ天下の物に)即きて、{[(其の已に知るの理に)因って、益々(之を)極め、以て〔(其の極に)至るを〕求め]不るを}莫から〉使む=
⑤ そのため、大學の敎へを始める際には、必ず〈學者をして(凡そ天下の物に)即いて、{[(その學者がすでに知っているの理に)依って、益々(これを)極め、以て〔(その極点に)至ることを〕求め]ないことが}無いやうに〉させる。
といふ風に「訓読」する「読み方」が、
⑤ 是以大學始教、必使學者即凡天下之物、莫不因其已知之理、而益窮之、以求至乎其極。
といふ「漢文」を、
⑤ Shì yǐ dàxué shǐ jiào, bì shǐ xuézhě jí fán tiānxià zhī wù, mòbù yīn qí yǐ zhīzhī lǐ, ér yì qióng zhī, yǐ qiú zhì hū qí jí.
といふ風に「音読」する「読み方」よりも、「劣ってゐる」はずが無い。
令和02年08月19日、毛利太。
2020年8月18日火曜日
「漢文の語順」の「例外」。
(01)
① 雨降。(雨降る)
(笠間書院、漢文の語法と故事成語、2005年、32頁改)
然るに、
(02)
① 雨降。
② 降雨。
に於いて、「普通」は、
① ではなく、
② である。
然るに、
(03)
② 天降レ雨=天、雨を降らす。
に於いて、
② 天(主語)
を「省略」すると、
② 降雨。
となる。
cf.
天(2)天にいます最高の神(学研、新版 漢字源、1999年、1543頁)。
(04)
③ 小人之学、入乎耳(小人の学は耳よる入る)。
に於いて、
③「乎」は「前置詞(from)」である。
(05)
④ 病従口入(病は口より入る)。
に於いて、
④「従」は「前置詞(from)」である。
従って、
(04)(05)により、
(06)
③ 小人之学、入乎耳(小人の学は耳よる入る)。
の「語順」に合はせるのであれば、
④ 病従口入(病は口より入る)。
ではなく、
④ 病入従口(病は口より入る)。
でなければ、ならない。
(07)
⑤「人を知らず」は「不レ知レ人」であるが、
⑤「己を知らず」は「不ニ己知一」である。
(岩波全書、漢文入門、1957年、23頁改)
従って、
(08)
⑤ 不己知(己を知らず)。
である以上、
⑤ 不己如(己に如かず)。
でなければ、ならない。
然るに、
(09)
「論語、学而」の場合は、何故か、
⑤ 不己如(己に如かず)。
ではなく、
⑥ 不如己(己に如かず)。
である。
(10)
⑦ 如雪(雪の如し)。
は、「(転倒のない)普通の語順」である。
然るに、
(11)
「何」「誰」などの疑問代名詞(が補語)であるときは、例外もあるけれども、一般的にいって、その語順が轉倒し、「何事(何をか事とす)」となる。
(岩波全書、漢文入門、1957年、23頁改)
従って、
(10)(11)により、
(12)
⑦ 如何(いかん)。
の、何」は、「転倒」されて、
⑧ 何如(いかん)。
となる。
然るに、
(13)
⑧ 何如(いかん) ⇔ どうであるか(どのやうか)。
に対して、
⑨ 如何(いかんせん)⇔ どうするか(いかにするか)。
である。
従って、
(13)により、
(14)
⑧ 何如(いかん) ⇔ どうであるか(どのやうか)。
⑨ 如之何(これをいかんせん)⇔ これをどうするか(これを、いかにするか)。
といふ、ことになる。
然るに、
(15)
コ・ラ・ム 「何如」と「如何」の違い ―
状況・程度などを問うときは「何如」を、手段・方法などを問うときは「如何」を用いる。しかし、混用されこともあり、文の前後関係から判断する必要がある。
(桐原書店、【基礎から解釈へ】漢文必携、2004年、47頁)
(11)により、
(16)
もう一度、確認すると、
「英語」と同様、「何(What)、誰(Who)」は、「普通」は「前置(強調)」される。
然るに、
(17)
⑩ 孰爲夫子(論語、微子)。
に於いて、
孰=Who
為=is
夫子=the teacher
である。
従って、
(17)により、
(18)
⑩ 孰爲夫子(だれをか夫子となす)。
の場合は、そのまま、
⑩ Who is the teacher?
である。
然るに、
(19)
⑪ 子為誰(論語、微子)。
の「語順」は、
⑪ You are who?
であって、
⑪ Who are you?
ではない。
従って、
(17)(18)(19)により、
(20)
⑩ 誰が先生か(誰爲夫子)。
⑪ あなたは誰か(子為誰)。
に於いて、
⑩ の「誰」は「前値(強調)」され、
⑪ の「誰」は「前値(強調)」されない。
従って、
(11)(20)により、
(21)
確かに、
「何」「誰」などの疑問代名詞(が補語である場合)の「転倒(前置)」には、「例外」が有る。
(22)
⑫ 復不得兎=
⑫ 復不レ得レ兎=
⑫ 復不〔得(兎)〕⇒
⑫ 復〔(兎)得〕不=
⑫ 復た〔(兎を)得〕ず。
の場合は、
⑫「1度目は、兎を得ることが出来ず」、
⑫「2度目も、兎を得ることが出来なかった」。
といふ「意味」である。
然るに、
(23)
⑬ 不復得兎=
⑬ 不レ復得一レ兎=
⑬ 不〔復得(兎)〕=
⑬ 〔復(兎)得〕不⇒
⑬ 〔復た(兎を)得〕ず。
の場合は、
⑬「1度目は、兎を得ることが出来たが」、
⑬「2度目は、兎を得ることが出来なかった」。
といふ「意味」である。
従って、
(24)
⑫ 復不得兎(復た兎を得ず)。
⑬ 不復得兎(復た兎を得ず)。
の場合は、「訓読」をすれば「同じ」であるが、「語順」が「異なる」ことによって、「意味」も変はって来る。
ただし、
(25)
⑫ 復レ不レ得レ兎(兎を得ざること、復たなり)。
⑬ 不レ復レ得レ兎(兎を得ること、復たはならず)。
といふ風に「訓読」すれば、「訓読・語順・意味」は、すべて、「同じ」ではない。
(26)
⑭ 看雁還。
であるならば、
⑭ 看雁還(雁を看て、私は還る)。
なのかも、知れないし、
⑭ 看雁還(私は、雁が還って行くのを看る)。
なのかも、知れない。
然るに、
(27)
⑮ 看雁而返(雁を看て還る)。
であれば、
⑮ 看雁還(私は、雁が還って行くのを看る)。
といふ「意味」では、有り得ない。
従って、
(28)
⑭ 看雁還(雁を看て、私は還る)。
であって、
⑭ 看雁還(私は、雁が還って行くのを看る)。
ではない。
といふことを、ハッキリさせたい場合は、
⑮ 看雁而還(雁を看て還る)。
といふ風に、書くことになる。
(29)
⑯ 越与呉戦、大敗。
⑰ 越与呉戦、大敗之。
に於いて、
⑯ 越、呉と戦ひ、大敗す。 ⇒ 負けたは越、勝ったのは呉。
⑰ 越、呉と戦ひ、大ひに之を敗る。⇒ 負けたは呉、勝ったのは越。
であると、加藤徹先生が、述べてゐる(白文攻略 漢文ひとり学び、2013年、39頁)。
(30)
質問者:cake-2009質問日時:2009/11/09 19:31回答数:1件
ラテン語は、英語の10倍難しいと聞いたのですが、本当ですか? 難しいという感覚は主観的なものなので、人によって違うかもしれませんが…
No.1ベストアンサー
回答者: Oubli 回答日時:2009/11/09 22:13
動詞は直接法が6時制、接続法が4時制あり、1~3人称、単数と複数でそれぞれ6形に語尾変化し、能動相と受動相も語尾変化で区別されます(他に命令法や分詞もあります)。語尾変化の体系は第一活用から第四活用まであります(単語によって決まる)。
名詞は6つの格、単数と複数で語尾変化し、男性・女性・中性のどれかに決まっており、語尾変化の体系は第一変化から第五変化まであります(単語によって決まる)。形容詞も名詞に似た感じで変化します。 要するに、日本語で動詞+助動詞+主語の人称・数、名詞+助詞+文法性・数といった情報が語尾変化によって1語に凝縮されており、しかもその変化体系が均一ではありません。もちろん私はラテン語をマスターしていませんが、文法をひととおりみてみると、フランス語の動詞活用やドイツ語の格変化はかなり簡易化されており、英語にいたっては児戯に等しいことが解ると思います。主観的には10倍どころではありません(教えて!goo)。
といふこと(語形変化)は、「ラテン語」には有っても、「漢文」には、一切、無い。
従って、
(31)
「語順こそ」が、「漢文の文法」である。
といふ風に、言へないこともない。
令和02年08月18日、毛利太。
① 雨降。(雨降る)
(笠間書院、漢文の語法と故事成語、2005年、32頁改)
然るに、
(02)
① 雨降。
② 降雨。
に於いて、「普通」は、
① ではなく、
② である。
然るに、
(03)
② 天降レ雨=天、雨を降らす。
に於いて、
② 天(主語)
を「省略」すると、
② 降雨。
となる。
cf.
天(2)天にいます最高の神(学研、新版 漢字源、1999年、1543頁)。
(04)
③ 小人之学、入乎耳(小人の学は耳よる入る)。
に於いて、
③「乎」は「前置詞(from)」である。
(05)
④ 病従口入(病は口より入る)。
に於いて、
④「従」は「前置詞(from)」である。
従って、
(04)(05)により、
(06)
③ 小人之学、入乎耳(小人の学は耳よる入る)。
の「語順」に合はせるのであれば、
④ 病従口入(病は口より入る)。
ではなく、
④ 病入従口(病は口より入る)。
でなければ、ならない。
(07)
⑤「人を知らず」は「不レ知レ人」であるが、
⑤「己を知らず」は「不ニ己知一」である。
(岩波全書、漢文入門、1957年、23頁改)
従って、
(08)
⑤ 不己知(己を知らず)。
である以上、
⑤ 不己如(己に如かず)。
でなければ、ならない。
然るに、
(09)
「論語、学而」の場合は、何故か、
⑤ 不己如(己に如かず)。
ではなく、
⑥ 不如己(己に如かず)。
である。
(10)
⑦ 如雪(雪の如し)。
は、「(転倒のない)普通の語順」である。
然るに、
(11)
「何」「誰」などの疑問代名詞(が補語)であるときは、例外もあるけれども、一般的にいって、その語順が轉倒し、「何事(何をか事とす)」となる。
(岩波全書、漢文入門、1957年、23頁改)
従って、
(10)(11)により、
(12)
⑦ 如何(いかん)。
の、何」は、「転倒」されて、
⑧ 何如(いかん)。
となる。
然るに、
(13)
⑧ 何如(いかん) ⇔ どうであるか(どのやうか)。
に対して、
⑨ 如何(いかんせん)⇔ どうするか(いかにするか)。
である。
従って、
(13)により、
(14)
⑧ 何如(いかん) ⇔ どうであるか(どのやうか)。
⑨ 如之何(これをいかんせん)⇔ これをどうするか(これを、いかにするか)。
といふ、ことになる。
然るに、
(15)
コ・ラ・ム 「何如」と「如何」の違い ―
状況・程度などを問うときは「何如」を、手段・方法などを問うときは「如何」を用いる。しかし、混用されこともあり、文の前後関係から判断する必要がある。
(桐原書店、【基礎から解釈へ】漢文必携、2004年、47頁)
(11)により、
(16)
もう一度、確認すると、
「英語」と同様、「何(What)、誰(Who)」は、「普通」は「前置(強調)」される。
然るに、
(17)
⑩ 孰爲夫子(論語、微子)。
に於いて、
孰=Who
為=is
夫子=the teacher
である。
従って、
(17)により、
(18)
⑩ 孰爲夫子(だれをか夫子となす)。
の場合は、そのまま、
⑩ Who is the teacher?
である。
然るに、
(19)
⑪ 子為誰(論語、微子)。
の「語順」は、
⑪ You are who?
であって、
⑪ Who are you?
ではない。
従って、
(17)(18)(19)により、
(20)
⑩ 誰が先生か(誰爲夫子)。
⑪ あなたは誰か(子為誰)。
に於いて、
⑩ の「誰」は「前値(強調)」され、
⑪ の「誰」は「前値(強調)」されない。
従って、
(11)(20)により、
(21)
確かに、
「何」「誰」などの疑問代名詞(が補語である場合)の「転倒(前置)」には、「例外」が有る。
(22)
⑫ 復不得兎=
⑫ 復不レ得レ兎=
⑫ 復不〔得(兎)〕⇒
⑫ 復〔(兎)得〕不=
⑫ 復た〔(兎を)得〕ず。
の場合は、
⑫「1度目は、兎を得ることが出来ず」、
⑫「2度目も、兎を得ることが出来なかった」。
といふ「意味」である。
然るに、
(23)
⑬ 不復得兎=
⑬ 不レ復得一レ兎=
⑬ 不〔復得(兎)〕=
⑬ 〔復(兎)得〕不⇒
⑬ 〔復た(兎を)得〕ず。
の場合は、
⑬「1度目は、兎を得ることが出来たが」、
⑬「2度目は、兎を得ることが出来なかった」。
といふ「意味」である。
従って、
(24)
⑫ 復不得兎(復た兎を得ず)。
⑬ 不復得兎(復た兎を得ず)。
の場合は、「訓読」をすれば「同じ」であるが、「語順」が「異なる」ことによって、「意味」も変はって来る。
ただし、
(25)
⑫ 復レ不レ得レ兎(兎を得ざること、復たなり)。
⑬ 不レ復レ得レ兎(兎を得ること、復たはならず)。
といふ風に「訓読」すれば、「訓読・語順・意味」は、すべて、「同じ」ではない。
(26)
⑭ 看雁還。
であるならば、
⑭ 看雁還(雁を看て、私は還る)。
なのかも、知れないし、
⑭ 看雁還(私は、雁が還って行くのを看る)。
なのかも、知れない。
然るに、
(27)
⑮ 看雁而返(雁を看て還る)。
であれば、
⑮ 看雁還(私は、雁が還って行くのを看る)。
といふ「意味」では、有り得ない。
従って、
(28)
⑭ 看雁還(雁を看て、私は還る)。
であって、
⑭ 看雁還(私は、雁が還って行くのを看る)。
ではない。
といふことを、ハッキリさせたい場合は、
⑮ 看雁而還(雁を看て還る)。
といふ風に、書くことになる。
(29)
⑯ 越与呉戦、大敗。
⑰ 越与呉戦、大敗之。
に於いて、
⑯ 越、呉と戦ひ、大敗す。 ⇒ 負けたは越、勝ったのは呉。
⑰ 越、呉と戦ひ、大ひに之を敗る。⇒ 負けたは呉、勝ったのは越。
であると、加藤徹先生が、述べてゐる(白文攻略 漢文ひとり学び、2013年、39頁)。
(30)
質問者:cake-2009質問日時:2009/11/09 19:31回答数:1件
ラテン語は、英語の10倍難しいと聞いたのですが、本当ですか? 難しいという感覚は主観的なものなので、人によって違うかもしれませんが…
No.1ベストアンサー
回答者: Oubli 回答日時:2009/11/09 22:13
動詞は直接法が6時制、接続法が4時制あり、1~3人称、単数と複数でそれぞれ6形に語尾変化し、能動相と受動相も語尾変化で区別されます(他に命令法や分詞もあります)。語尾変化の体系は第一活用から第四活用まであります(単語によって決まる)。
名詞は6つの格、単数と複数で語尾変化し、男性・女性・中性のどれかに決まっており、語尾変化の体系は第一変化から第五変化まであります(単語によって決まる)。形容詞も名詞に似た感じで変化します。 要するに、日本語で動詞+助動詞+主語の人称・数、名詞+助詞+文法性・数といった情報が語尾変化によって1語に凝縮されており、しかもその変化体系が均一ではありません。もちろん私はラテン語をマスターしていませんが、文法をひととおりみてみると、フランス語の動詞活用やドイツ語の格変化はかなり簡易化されており、英語にいたっては児戯に等しいことが解ると思います。主観的には10倍どころではありません(教えて!goo)。
といふこと(語形変化)は、「ラテン語」には有っても、「漢文」には、一切、無い。
従って、
(31)
「語順こそ」が、「漢文の文法」である。
といふ風に、言へないこともない。
令和02年08月18日、毛利太。
2020年8月17日月曜日
「敢・敢不・不敢・不敢不」について。
(01)
[三] 借虎威(戦國策)
① 虎求百獸而食之得狐。
② 狐曰子無敢食我也。
③ 天帝使我長百獸。
④ 今子食我是逆天帝命也。
⑤ 子以我爲不信吾爲子先行。
⑥ 子隨我後觀。
⑦ 百獸之見我而敢不走乎。
従って、
(01)により、
(02)
「括弧」を付けると、
① 虎求(百獸)而食(之)得(狐)。
② 狐曰子無〔敢食(我)〕也。
③ 天帝使〔我長(百獸)〕。
④ 今子食(我)是逆(天帝命)也。
⑤ 子以(我)爲〔不(信)〕吾爲(子)先行。
⑥ 子隨(我後)觀。
⑦ 百獸之見(我)而敢不(走)乎。
従って、
(02)により、
(03)
□( )⇒( )□
□〔 〕⇒〔 〕□
といふ「移動」を行ふと、
① 虎(百獸)求而(之)食(狐)得。
② 狐曰子〔敢(我)食〕無也。
③ 天帝〔我(百獸)長〕使。
④ 今子(我)食是(天帝命)逆也。
⑤ 子(我)以〔(信)不〕爲吾(子)爲先行。
⑥ 子(我後隨)觀。
⑦ 百獸之(我)見而敢(走)不乎。
従って、
(03)により、
(04)
「平仮名」を加へると、
① 虎(百獸を)求めて(之を)食ひ(狐を)得たり。
② 狐曰く子〔敢へて(我を)食ふこと〕無かれ。
③ 天帝〔我をして(百獸に)長たら〕使む。
④ 今子(我を)食はば是(天帝の命に)逆ふなり。
⑤ 子(我を)以て〔(信なら)ずと〕爲さば吾(子の)爲に先行せん。
⑥ 子(我が後に隨ひて)觀よ。
⑦ 百獸の(我を)見て敢へ(走ら)ざらんや。
然るに、
(05)
【走】ス(呉)、ソウ(漢)
②《動詞》にげる(にぐ)、速足でにげる。
(学研、漢和大辞典、1978年、1269頁)
従って、
(01)~(05)により、
(06)
「文脈」と、「走」の「意味」からすると、
(ⅱ)敢不走乎。
といふ「漢文(反語)」は、
(〃)(逃げたいが、逃げたいといふ気持ちを、押しとどめて、)逃げない。といふことは、出来るだらうか(、いや、出来ない)。
といふ、「意味」である。
従って、
(06)により、
(07)
① 敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。
② 敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。
③ 不敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。 といふことが出来ない。
④ 不敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。といふことが出来ない。
従って、
(07)により、
(08)
① 敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。
② 敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。
③ 不敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。 といふことが出来ない。⇔ 逃げない。
④ 不敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。といふことが出来ない。⇔ 逃げる。
従って、
(08)により、
(09)
「結果」だけからすると、
① 敢 走。⇔ 逃げる。
② 敢不走。⇔ 逃げない。
③ 不敢 走。⇔ 逃げない。
④ 不敢不走。⇔ 逃げる。
であるものの、
① 敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。
④ 不敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。といふことが出来ない。⇔ 逃げる。
であって、
② 敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。
③ 不敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。 といふことが出来ない。⇔ 逃げない。
であるため、「内容」としては、「同じ」ではない。
然るに、
(10)
③ 昆弟妻嫂、側レ目不二敢視一。
③ 兄弟や妻や兄嫁は目をそらし、まともに見ることができなかった。
(三省堂、明解古典学習シリーズ18、1973年、92頁)
従って、
(08)(09)(10)により、
(11)
① 敢
② 敢不
③ 不敢
④ 不敢不
に於ける、
③ 不
④ 不
には、
③ ・・・・・といふことが(は)出来ない。
④ ・・・・・といふことが(は)出来ない。
といふ「意味」が、「含まれてゐる」。
然るに、
(12)
④ ・・・・・といふわけにはいかない。
のであれば、
④ ・・・・・といふことは出来ない。
従って、
(11)(12)
(13)
③ 不三敢加二兵於趙一(敢へて、兵を趙に加へず)。
④ 不ニ敢不一レ告(敢へて、告げずんばあらず)。
といふ「漢文」は、「簡単に言ふ」と、それぞれ、
③(趙を攻めたいが、勇気が足りず、)趙を攻める。というふことが出来ない。
④(告げずに済むことではないので、)告げない。といふわけにはいかない。
といふ、「意味」である。
然るに、
(14)
Ken dare not try again.
ケンは再度試みる勇気がない。 - Tanaka Corpus
He dare not say so to your face.発音を聞く例文帳に追加
彼は君に向かってそう言う勇気は有るまい - 斎藤和英大辞典
従って、
(13)(14)により、
(15)
「不敢」は、「dare not」に、似てゐる。
令和02年08月17日、毛利太。
[三] 借虎威(戦國策)
① 虎求百獸而食之得狐。
② 狐曰子無敢食我也。
③ 天帝使我長百獸。
④ 今子食我是逆天帝命也。
⑤ 子以我爲不信吾爲子先行。
⑥ 子隨我後觀。
⑦ 百獸之見我而敢不走乎。
従って、
(01)により、
(02)
「括弧」を付けると、
① 虎求(百獸)而食(之)得(狐)。
② 狐曰子無〔敢食(我)〕也。
③ 天帝使〔我長(百獸)〕。
④ 今子食(我)是逆(天帝命)也。
⑤ 子以(我)爲〔不(信)〕吾爲(子)先行。
⑥ 子隨(我後)觀。
⑦ 百獸之見(我)而敢不(走)乎。
従って、
(02)により、
(03)
□( )⇒( )□
□〔 〕⇒〔 〕□
といふ「移動」を行ふと、
① 虎(百獸)求而(之)食(狐)得。
② 狐曰子〔敢(我)食〕無也。
③ 天帝〔我(百獸)長〕使。
④ 今子(我)食是(天帝命)逆也。
⑤ 子(我)以〔(信)不〕爲吾(子)爲先行。
⑥ 子(我後隨)觀。
⑦ 百獸之(我)見而敢(走)不乎。
従って、
(03)により、
(04)
「平仮名」を加へると、
① 虎(百獸を)求めて(之を)食ひ(狐を)得たり。
② 狐曰く子〔敢へて(我を)食ふこと〕無かれ。
③ 天帝〔我をして(百獸に)長たら〕使む。
④ 今子(我を)食はば是(天帝の命に)逆ふなり。
⑤ 子(我を)以て〔(信なら)ずと〕爲さば吾(子の)爲に先行せん。
⑥ 子(我が後に隨ひて)觀よ。
⑦ 百獸の(我を)見て敢へ(走ら)ざらんや。
然るに、
(05)
【走】ス(呉)、ソウ(漢)
②《動詞》にげる(にぐ)、速足でにげる。
(学研、漢和大辞典、1978年、1269頁)
従って、
(01)~(05)により、
(06)
「文脈」と、「走」の「意味」からすると、
(ⅱ)敢不走乎。
といふ「漢文(反語)」は、
(〃)(逃げたいが、逃げたいといふ気持ちを、押しとどめて、)逃げない。といふことは、出来るだらうか(、いや、出来ない)。
といふ、「意味」である。
従って、
(06)により、
(07)
① 敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。
② 敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。
③ 不敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。 といふことが出来ない。
④ 不敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。といふことが出来ない。
従って、
(07)により、
(08)
① 敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。
② 敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。
③ 不敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。 といふことが出来ない。⇔ 逃げない。
④ 不敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。といふことが出来ない。⇔ 逃げる。
従って、
(08)により、
(09)
「結果」だけからすると、
① 敢 走。⇔ 逃げる。
② 敢不走。⇔ 逃げない。
③ 不敢 走。⇔ 逃げない。
④ 不敢不走。⇔ 逃げる。
であるものの、
① 敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。
④ 不敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。といふことが出来ない。⇔ 逃げる。
であって、
② 敢不走。⇔(逃げたいが、 逃げたいといふ 気持ちを、押しとどめて、)逃げない。
③ 不敢 走。⇔(逃げたくないが、逃げたくないといふ気持ちを、押しとどめて、)逃げる。 といふことが出来ない。⇔ 逃げない。
であるため、「内容」としては、「同じ」ではない。
然るに、
(10)
③ 昆弟妻嫂、側レ目不二敢視一。
③ 兄弟や妻や兄嫁は目をそらし、まともに見ることができなかった。
(三省堂、明解古典学習シリーズ18、1973年、92頁)
従って、
(08)(09)(10)により、
(11)
① 敢
② 敢不
③ 不敢
④ 不敢不
に於ける、
③ 不
④ 不
には、
③ ・・・・・といふことが(は)出来ない。
④ ・・・・・といふことが(は)出来ない。
といふ「意味」が、「含まれてゐる」。
然るに、
(12)
④ ・・・・・といふわけにはいかない。
のであれば、
④ ・・・・・といふことは出来ない。
従って、
(11)(12)
(13)
③ 不三敢加二兵於趙一(敢へて、兵を趙に加へず)。
④ 不ニ敢不一レ告(敢へて、告げずんばあらず)。
といふ「漢文」は、「簡単に言ふ」と、それぞれ、
③(趙を攻めたいが、勇気が足りず、)趙を攻める。というふことが出来ない。
④(告げずに済むことではないので、)告げない。といふわけにはいかない。
といふ、「意味」である。
然るに、
(14)
Ken dare not try again.
ケンは再度試みる勇気がない。 - Tanaka Corpus
He dare not say so to your face.発音を聞く例文帳に追加
彼は君に向かってそう言う勇気は有るまい - 斎藤和英大辞典
従って、
(13)(14)により、
(15)
「不敢」は、「dare not」に、似てゐる。
令和02年08月17日、毛利太。
「必不仁」と「不必仁」の「述語論理」。
(01)
① ∀x(Fx→ Gx)≡すべてxについて、xがFならば、xはGである。≡すべてのFはGである(全部肯定)。
② ∀x(Fx→~Gx)≡すべてxについて、xがFならば、xはGでない。≡すべてのFはGでない(全部否定)。
③ ~∀x(Fx→ Gx)≡(すべてのFがGである。)といふわけではない(部分否定)。
④ ~∀x(Fx→~Gx)≡(すべてのFがGでない。)といふわけではない(部分肯定)。
然るに、
(02)
(a)
1(1) ∀x(Fx→ Gx) A
1(2) Fa→~Ga 1UE
1(3) ~Fa∨ Ga 2含意の定義
1(4) ~(Fa&~Ga) 3ド・モルガンの法則
1(5)∀x~(Fx&~Gx) 4UI
1(6)~∃x(Fx&~Gx) 5量化子の関係
(b)
1(1)~∃x(Fx&~Gx) A
1(2)∀x~(Fx&~Gx) 1量化子の関係
1(3) ~(Fa&~Ga) 1UE
1(4) ~Fa∨ Ga 3ド・モルガンの法則
1(5) Fa→ Ga 4ド・モルガンの法則
1(6) ∀x(Fx→~Gx) 5UI
従って、
(02)により、
① ∀x(Fx→ Gx)≡~∃x(Fx&~Gx)≡(Fであって、Gでないx)は存在しない≡GでないFは、存在しない(全部肯定)。
② ∀x(Fx→~Gx)≡~∃x(Fx& Gx)≡(Fであって、Gであるx)は存在しない≡GであるFは、存在しない(全部否定)。
然るに、
(03)
(c)
1 (1)~∀x(Fx→Gx) A
1 (2)∃x~(Fx→Gx) 1量化子の関係
3(3) ~(Fa→Ga) A
3(4) ~(~Fa∨Ga) 3含意の定義
3(5) Fa&~Ga 4ド・モルガンの法則
3(6)∃x(Fx&~Gx) 5EI
1 (7)∃x(Fx&~Gx) 136EE
(d)
1 (1)∃x(Fx&~Gx) A
2(2) Fa&~Ga A
2(3) ~(~Fa∨Ga) 2ド・モルガンの法則
2(4) ~(Fa→Ga) 3含意の定義
2(5)∃x~(Fx→Gx) 4EI
1 (6)∃x~(Fx→Gx) 125EE
1 (7)~∀x(Fx→Gx) 6量化子の関係
従って、
(03)により、
(04)
③ ~∀x(Fx→ Gx)≡∃x(Fx&~Gx)≡(Fであって、Gでないx)が存在する≡GでないFが、存在する(部分否定)。
④ ~∀x(Fx→~Gx)≡∃x(Fx& Gx)≡(Fであって、Gであるx)が存在する≡GであるFが、存在する(部分肯定)。
従って、
(02)(04)により、
(05)
① ∀x(Fx→ Gx)≡~∃x(Fx&~Gx)≡(Fであって、Gでないx)は存在しない≡GでないFは、存在しない(全部肯定)。
② ∀x(Fx→~Gx)≡~∃x(Fx& Gx)≡(Fであって、Gであるx)は存在しない≡GであるFは、存在しない(全部否定)。
③ ~∀x(Fx→ Gx)≡ ∃x(Fx&~Gx)≡(Fであって、Gでないx)が存在する ≡GでないFが、存在する (部分否定)。
④ ~∀x(Fx→~Gx)≡ ∃x(Fx& Gx)≡(Fであって、Gであるx)が存在する ≡GであるFが、存在する (部分肯定)。
然るに、
(06)
「漢文の教科書」等で、取り上げられるのは、専ら、
② ∀x(Fx→~Gx)≡~∃x(Fx& Gx)≡(Fであって、Gであるx)は存在しない≡GであるFは、存在しない(全部否定)。
③ ~∀x(Fx→ Gx)≡ ∃x(Fx&~Gx)≡(Fであって、Gでないx)が存在する ≡GでないFが、存在する (部分否定)。
である。
然るに、
(07)
② 勇者必不レ仁。⇔
② 勇者は必ず仁ならず。
といふことは、
② ∀x(勇者x→~仁x)⇔
② すべてのxについて(xが勇者であるならば、xは仁ではない)。
といふことに、他ならない。
(08)
③ 勇者不二必仁一。⇔
③ 勇者は必ずしも仁ならず。
といふことは、
③ ~∀x(勇者x→仁x)⇔
③ すべてのxについて(xが勇者であるならば、xは仁ではある)。といふわけではない。
といふことに、他ならない。
従って、
(07)(08)により、
(09)
② 勇者必不レ仁。 ≡ ∀x(勇者x→~仁x)≡~∃x(勇者x& 仁x)
③ 勇者不二必仁一。≡~∀x(勇者x→ 仁x)≡ ∃x(勇者x&~仁x)
といふ「等式」が、成立する。
令和02年08月17日、毛利太。
① ∀x(Fx→ Gx)≡すべてxについて、xがFならば、xはGである。≡すべてのFはGである(全部肯定)。
② ∀x(Fx→~Gx)≡すべてxについて、xがFならば、xはGでない。≡すべてのFはGでない(全部否定)。
③ ~∀x(Fx→ Gx)≡(すべてのFがGである。)といふわけではない(部分否定)。
④ ~∀x(Fx→~Gx)≡(すべてのFがGでない。)といふわけではない(部分肯定)。
然るに、
(02)
(a)
1(1) ∀x(Fx→ Gx) A
1(2) Fa→~Ga 1UE
1(3) ~Fa∨ Ga 2含意の定義
1(4) ~(Fa&~Ga) 3ド・モルガンの法則
1(5)∀x~(Fx&~Gx) 4UI
1(6)~∃x(Fx&~Gx) 5量化子の関係
(b)
1(1)~∃x(Fx&~Gx) A
1(2)∀x~(Fx&~Gx) 1量化子の関係
1(3) ~(Fa&~Ga) 1UE
1(4) ~Fa∨ Ga 3ド・モルガンの法則
1(5) Fa→ Ga 4ド・モルガンの法則
1(6) ∀x(Fx→~Gx) 5UI
従って、
(02)により、
① ∀x(Fx→ Gx)≡~∃x(Fx&~Gx)≡(Fであって、Gでないx)は存在しない≡GでないFは、存在しない(全部肯定)。
② ∀x(Fx→~Gx)≡~∃x(Fx& Gx)≡(Fであって、Gであるx)は存在しない≡GであるFは、存在しない(全部否定)。
然るに、
(03)
(c)
1 (1)~∀x(Fx→Gx) A
1 (2)∃x~(Fx→Gx) 1量化子の関係
3(3) ~(Fa→Ga) A
3(4) ~(~Fa∨Ga) 3含意の定義
3(5) Fa&~Ga 4ド・モルガンの法則
3(6)∃x(Fx&~Gx) 5EI
1 (7)∃x(Fx&~Gx) 136EE
(d)
1 (1)∃x(Fx&~Gx) A
2(2) Fa&~Ga A
2(3) ~(~Fa∨Ga) 2ド・モルガンの法則
2(4) ~(Fa→Ga) 3含意の定義
2(5)∃x~(Fx→Gx) 4EI
1 (6)∃x~(Fx→Gx) 125EE
1 (7)~∀x(Fx→Gx) 6量化子の関係
従って、
(03)により、
(04)
③ ~∀x(Fx→ Gx)≡∃x(Fx&~Gx)≡(Fであって、Gでないx)が存在する≡GでないFが、存在する(部分否定)。
④ ~∀x(Fx→~Gx)≡∃x(Fx& Gx)≡(Fであって、Gであるx)が存在する≡GであるFが、存在する(部分肯定)。
従って、
(02)(04)により、
(05)
① ∀x(Fx→ Gx)≡~∃x(Fx&~Gx)≡(Fであって、Gでないx)は存在しない≡GでないFは、存在しない(全部肯定)。
② ∀x(Fx→~Gx)≡~∃x(Fx& Gx)≡(Fであって、Gであるx)は存在しない≡GであるFは、存在しない(全部否定)。
③ ~∀x(Fx→ Gx)≡ ∃x(Fx&~Gx)≡(Fであって、Gでないx)が存在する ≡GでないFが、存在する (部分否定)。
④ ~∀x(Fx→~Gx)≡ ∃x(Fx& Gx)≡(Fであって、Gであるx)が存在する ≡GであるFが、存在する (部分肯定)。
然るに、
(06)
「漢文の教科書」等で、取り上げられるのは、専ら、
② ∀x(Fx→~Gx)≡~∃x(Fx& Gx)≡(Fであって、Gであるx)は存在しない≡GであるFは、存在しない(全部否定)。
③ ~∀x(Fx→ Gx)≡ ∃x(Fx&~Gx)≡(Fであって、Gでないx)が存在する ≡GでないFが、存在する (部分否定)。
である。
然るに、
(07)
② 勇者必不レ仁。⇔
② 勇者は必ず仁ならず。
といふことは、
② ∀x(勇者x→~仁x)⇔
② すべてのxについて(xが勇者であるならば、xは仁ではない)。
といふことに、他ならない。
(08)
③ 勇者不二必仁一。⇔
③ 勇者は必ずしも仁ならず。
といふことは、
③ ~∀x(勇者x→仁x)⇔
③ すべてのxについて(xが勇者であるならば、xは仁ではある)。といふわけではない。
といふことに、他ならない。
従って、
(07)(08)により、
(09)
② 勇者必不レ仁。 ≡ ∀x(勇者x→~仁x)≡~∃x(勇者x& 仁x)
③ 勇者不二必仁一。≡~∀x(勇者x→ 仁x)≡ ∃x(勇者x&~仁x)
といふ「等式」が、成立する。
令和02年08月17日、毛利太。
2020年8月16日日曜日
「世に伯楽有りて、然る後に千里の馬有り。」の「述語論理」。
(01)
(ⅱ)
1(1)~{~∃x(伯楽x)& ∃y(千里馬y)} A
1(2) ~~∃x(伯楽x)∨~∃y(千里馬y) 1ド・モルガンの法則
1(3) ~∃x(伯楽x)→~∃y(千里馬y) 2含意の定義
(ⅲ)
1(1) ~∃x(伯楽x)→~∃y(千里馬y) A
1(2) ~~∃x(伯楽x)∨~∃y(千里馬y) 1含意の定義
1(3)~{~∃x(伯楽x)& ∃y(千里馬y)} 2ド・モルガンの法則
(ⅲ)
1 (1) ~∃x(伯楽x)→~∃y(千里馬y) A
2 (2) ∃y(千里馬y) A
3(3) ~∃x(伯楽x) A
1 3(4) ~∃y(千里馬y) 13MPP
123(5) ∃y(千里馬y)&~∃y(千里馬y) 24&I
12 (6)~~∃x(伯楽x) 35RAA
12 (7) ∃x(伯楽x) 6DN
1 (8) ∃y(千里馬y)→∃x(伯楽x) 27CP
(ⅳ)
1 (1) ∃y(千里馬y)→∃x(伯楽x) A
2 (2) ~∃x(伯楽x) A
3(3) ∃y(千里馬y) A
1 3(4) ∃x(伯楽x) 13MPP
123(5) ~∃x(伯楽x)&∃x(伯楽x) 24&I
12 (6) ~∃y(千里馬y) 35RAA
1 (7) ~∃x(伯楽x)→~∃y(千里馬y) 26CP
従って、
(01)により、
(02)
② ~{~∃x(伯楽x) & ∃y(千里馬y)}
③ ~∃x(伯楽x) →~∃y(千里馬y)
④ ∃y(千里馬y)→ ∃x(伯楽x)
に於いて、すなはち、
②{伯楽が存在せずして、千里の馬が存在する。}といふことはない。
③ 伯楽が存在しないならば、千里の馬も存在しない。
④ 千里の馬が存在するならば、伯楽も存在する。
に於いて、
②=③=④ である。
然るに、
(03)
③ 伯楽が存在しないならば、千里の馬も存在しない。
④ 千里の馬が存在するならば、伯楽も存在する。
といふことは、
③ 伯楽の存在が、千里馬の存在の、「必要条件」である。
④ 伯楽の存在が、千里馬の存在の、「必要条件」である。
といふことに、他ならない。
従って、
(02)(03)により、
(04)
② ~{~∃x(伯楽x)&∃y(千里馬y)}⇔
②{伯楽が存在せずして、千里の馬が存在する。}といふことはない。
といふ「命題」が「真」である。
といふことは、
③ 伯楽の存在が、千里馬の存在の、「必要条件」である。
といふことを、示してゐる。
然るに、
(05)
① 有二伯楽一、然後有二千里馬一⇔
① 伯楽有りて、然る後に千里の馬有り。
といふことは、
③ 伯楽の存在が、千里馬の存在の、「必要条件」である。
といふことに、他ならない。
従って、
(04)(05)により、
(06)
① 有二伯楽一、然後有二千里馬一。
② ~{~∃x(伯楽x)&∃y(千里馬y)}。
に於いて、
①=② である。
然るに、
(07)
② ~{~∃x(伯楽x)&∃y(千里馬y)}。
の場合は、「正確」には、
② ~{~〔∃x(伯楽x)〕&∃y(千里馬y)}。
といふ風に、書くことになる。
然るに、
(08)
「~」は、「否定」であって、
「∃」は、「有る」である。
「&」は、「而」 である。
従って、
(07)(08)により、
(09)
② ~{~〔∃x(伯楽x)〕&∃y(千里馬y)}。
といふ「述語論理式」は、
② 無{不〔有x(伯楽x)〕而有y(千里馬y)}。
といふ風に、書くことが、出来る。
然るに、
(10)
「漢文」には、「変数(x、y)」が無い。
従って、
(09)(10)により、
(11)
② ~{~〔∃x(伯楽x)〕&∃y(千里馬y)}。
といふ「述語論理式」は、
② 無{不〔有(伯楽)〕而有(千里馬)}。
といふ「漢文」に、「相当」する。
然るに、
(12)
② 無不有伯楽而有千里馬=
② 無下不レ有二伯楽一而有中千里馬上=
② 無[不〔有(伯楽)〕而有(千里馬)]⇒
② [〔(伯楽)有〕不而(千里馬)有]無=
② [〔(伯楽)有ら〕ずして(千里馬)有る]無し=
② 伯楽がゐないのに、千里の馬がゐるといふことは無い。
従って、
(06)~(12)により、
(13)
① 有二伯楽一、然後有二千里馬一。
② 無[不〔有(伯楽)〕而有(千里馬)]。
に於いて、
①=② である。
従って、
(13)により、
(14)
① 世有二伯楽一、然後有二千里馬一。
② 無[世不〔有(伯楽)〕而有(千里馬)]。
に於いて、
①=② である。
従って、
(14)により、
(15)
「訓読」をすると、
① 世に(伯楽)有りて、然る後に(千里の馬)有り。
②[世に〔(伯楽)有ら〕不して(千里馬)有るは]無し。
に於いて、
①=② である。
令和02年08月16日、毛利太。
(ⅱ)
1(1)~{~∃x(伯楽x)& ∃y(千里馬y)} A
1(2) ~~∃x(伯楽x)∨~∃y(千里馬y) 1ド・モルガンの法則
1(3) ~∃x(伯楽x)→~∃y(千里馬y) 2含意の定義
(ⅲ)
1(1) ~∃x(伯楽x)→~∃y(千里馬y) A
1(2) ~~∃x(伯楽x)∨~∃y(千里馬y) 1含意の定義
1(3)~{~∃x(伯楽x)& ∃y(千里馬y)} 2ド・モルガンの法則
(ⅲ)
1 (1) ~∃x(伯楽x)→~∃y(千里馬y) A
2 (2) ∃y(千里馬y) A
3(3) ~∃x(伯楽x) A
1 3(4) ~∃y(千里馬y) 13MPP
123(5) ∃y(千里馬y)&~∃y(千里馬y) 24&I
12 (6)~~∃x(伯楽x) 35RAA
12 (7) ∃x(伯楽x) 6DN
1 (8) ∃y(千里馬y)→∃x(伯楽x) 27CP
(ⅳ)
1 (1) ∃y(千里馬y)→∃x(伯楽x) A
2 (2) ~∃x(伯楽x) A
3(3) ∃y(千里馬y) A
1 3(4) ∃x(伯楽x) 13MPP
123(5) ~∃x(伯楽x)&∃x(伯楽x) 24&I
12 (6) ~∃y(千里馬y) 35RAA
1 (7) ~∃x(伯楽x)→~∃y(千里馬y) 26CP
従って、
(01)により、
(02)
② ~{~∃x(伯楽x) & ∃y(千里馬y)}
③ ~∃x(伯楽x) →~∃y(千里馬y)
④ ∃y(千里馬y)→ ∃x(伯楽x)
に於いて、すなはち、
②{伯楽が存在せずして、千里の馬が存在する。}といふことはない。
③ 伯楽が存在しないならば、千里の馬も存在しない。
④ 千里の馬が存在するならば、伯楽も存在する。
に於いて、
②=③=④ である。
然るに、
(03)
③ 伯楽が存在しないならば、千里の馬も存在しない。
④ 千里の馬が存在するならば、伯楽も存在する。
といふことは、
③ 伯楽の存在が、千里馬の存在の、「必要条件」である。
④ 伯楽の存在が、千里馬の存在の、「必要条件」である。
といふことに、他ならない。
従って、
(02)(03)により、
(04)
② ~{~∃x(伯楽x)&∃y(千里馬y)}⇔
②{伯楽が存在せずして、千里の馬が存在する。}といふことはない。
といふ「命題」が「真」である。
といふことは、
③ 伯楽の存在が、千里馬の存在の、「必要条件」である。
といふことを、示してゐる。
然るに、
(05)
① 有二伯楽一、然後有二千里馬一⇔
① 伯楽有りて、然る後に千里の馬有り。
といふことは、
③ 伯楽の存在が、千里馬の存在の、「必要条件」である。
といふことに、他ならない。
従って、
(04)(05)により、
(06)
① 有二伯楽一、然後有二千里馬一。
② ~{~∃x(伯楽x)&∃y(千里馬y)}。
に於いて、
①=② である。
然るに、
(07)
② ~{~∃x(伯楽x)&∃y(千里馬y)}。
の場合は、「正確」には、
② ~{~〔∃x(伯楽x)〕&∃y(千里馬y)}。
といふ風に、書くことになる。
然るに、
(08)
「~」は、「否定」であって、
「∃」は、「有る」である。
「&」は、「而」 である。
従って、
(07)(08)により、
(09)
② ~{~〔∃x(伯楽x)〕&∃y(千里馬y)}。
といふ「述語論理式」は、
② 無{不〔有x(伯楽x)〕而有y(千里馬y)}。
といふ風に、書くことが、出来る。
然るに、
(10)
「漢文」には、「変数(x、y)」が無い。
従って、
(09)(10)により、
(11)
② ~{~〔∃x(伯楽x)〕&∃y(千里馬y)}。
といふ「述語論理式」は、
② 無{不〔有(伯楽)〕而有(千里馬)}。
といふ「漢文」に、「相当」する。
然るに、
(12)
② 無不有伯楽而有千里馬=
② 無下不レ有二伯楽一而有中千里馬上=
② 無[不〔有(伯楽)〕而有(千里馬)]⇒
② [〔(伯楽)有〕不而(千里馬)有]無=
② [〔(伯楽)有ら〕ずして(千里馬)有る]無し=
② 伯楽がゐないのに、千里の馬がゐるといふことは無い。
従って、
(06)~(12)により、
(13)
① 有二伯楽一、然後有二千里馬一。
② 無[不〔有(伯楽)〕而有(千里馬)]。
に於いて、
①=② である。
従って、
(13)により、
(14)
① 世有二伯楽一、然後有二千里馬一。
② 無[世不〔有(伯楽)〕而有(千里馬)]。
に於いて、
①=② である。
従って、
(14)により、
(15)
「訓読」をすると、
① 世に(伯楽)有りて、然る後に(千里の馬)有り。
②[世に〔(伯楽)有ら〕不して(千里馬)有るは]無し。
に於いて、
①=② である。
令和02年08月16日、毛利太。
2020年8月15日土曜日
「兎不可復得(論理的)」と「不復返(非論理的)」。
(01)
P≡兎を得る。
Q≡兎を得る。
とする。
従って、
(01)により、
(02)
P&Q≡兎を得て、兎を得る。
従って、
(02)により、
(03)
P&Q≡兎を二度得る。
従って、
(03)により、
(04)
~(P&Q)≡(兎を二度得る)といふことはない。
然るに、
(05)
(ⅰ)
1 (1)~(P&Q) A
2 (2) P A
3(3) Q A
23(4) P&Q 23&I
123(5)~(P&Q)&
(P&Q) 14&I
12 (6) ~Q 35RAA
1 (7) P→~Q 26CP
(ⅱ)
1 (1) P→~Q A
2 (2) P& Q A
2 (3) P 2&E
12 (4) ~Q 13MPP
2 (5) Q 2&E
12 (6) ~Q&Q 45&I
1 (7)~(P&Q) 26RAA
従って、
(05)により、
(06)
① ~(P& Q)
② P→~Q
に於いて、
①=② である。
従って、
(01)~(06)により、
(07)
① ~(P& Q)≡(兎を二度得る)といふことはない。
② P→~Q ≡(前に)兎を得ているならば、(次に)兎を得ることはない。
に於いて、
①=② である。
然るに、
(08)
[二] 守株(韓非子)
① 宋人有 耕田者。
② 田中有株、兎走觸株、折頸而死。
③ 因釋其耒而守株、冀復得兎。
④ 兎不可復得、而身爲宋國笑。
従って、
(08)により、
(09)
「括弧」を加へると、
① 宋人有〔耕(田)者〕。
② 田中有(株)、兎走觸(株)、折(頸)而死。
③ 因釋(其耒)而守(株)、冀〔復得(兎)〕。
④ 兎不〔可(復得)〕、而身爲(宋國笑)。
従って、
(09)により、
(10)
□( )⇒( )□
□〔 〕⇒( )□
といふ「移動」を行ふと、
① 宋人〔(田)耕者〕有。
② 田中(株)有、兎走(株)觸、(頸)折而死。
③ 因(其耒)釋而(株)守、〔復(兎)得〕冀。
④ 兎〔(復得)可〕不、而身(宋國笑)爲。
従って、
(10)により、
(11)
「平仮名」を加へると、
① 宋人に〔(田を)耕す者〕有り。
② 田中に(株)有り、兎走りて(株に)觸れ、(頸を)折りて死す。
③ 因りて(其の耒)釋て(株を)守り、〔復た(兎を)得んことを〕冀ふ。
④ 兎〔(復た得)可から〕ずして、身は(宋國の笑ひと)爲れり。
従って、
(07)~(11)により、
(12)
④ 兎不可復得=
④ 兎不〔可(復得)〕⇒
④ 兎〔(復た得)可から〕ず。
といふことは、
④ 一度目は、兎を得たが、二度目には、兎を得なかった。
といふことに、他ならない。
従って、
(12)により、
(13)
⑤ 不復返=
⑤ 不(復返)⇒
⑤ (復た返ら)ず=
⑤ 一度目は、返ったが、二度目には、返らなかった。
といふ、ことになる。
然るに、
(14)
崔顥の「黄鶴楼」詩の「黄鶴一去不二復返一」の場合は、
「前には一度返ったことがあるのか」と質問されると返答に窮し、「部分否定」とすることはできない。
(原田種成、私の漢文講義、1995年、156頁改)
従って、
(13)(14)により、
(15)
⑤ 昔人已乗黄鶴去(昔人已に黄鶴に乗りて去り、)
⑤ 此地空餘黄鶴楼(此地空しく餘す黄鶴楼。)
⑤ 黄鶴一去不復返(黄鶴一たび去りて復た返らず。)
に於ける、
⑤ 黄鶴一去不復返(黄鶴一たび去りて復た返らず。)
の場合は、「理詰めで(論理的に)」考へれば、
⑤ 黄鶴一去、不返(黄鶴一たび去りて、返らず。)
でなければ、ならない。
従って、
(12)~(15)により、
(16)
④ 兎不可復得=
④ 兎不〔可(復得)〕⇒
④ 兎〔(復た得)可から〕ず。
といふ「漢文」は、「論理的」であるが、
⑤ 不復返=
⑤ 不(復返)⇒
⑤ (復た返ら)ず=
といふ「漢文」は、「論理的」ではない。
然るに、
(17)
「この副詞は、どういう意味なのか?」と理づめで考えても、わからない箇所も多い。漢文の原文を中国語で読むと、それらの字は、音読のリズムを作るための「字数稼ぎ」や「箸休め」であることも多い。
(加藤徹、白文攻略 漢文法ひとり学び、2013年、18頁改)
従って、
(16)(17)
(18)
昔人已乗黄鶴去(昔人已に黄鶴に乗りて去り、)
此地空餘黄鶴楼(此地空しく餘す黄鶴楼。)
黄鶴一去不復返(黄鶴一たび去りて復た返らず。)
白雲千載空悠悠(白雲千載空しく悠悠。)
晴川歴歴漢陽樹(晴川歴歴たり漢陽の樹。)
芳艸萋萋鸚鵡洲(芳艸萋萋たり鸚鵡洲。)
日暮郷関何處是(日暮郷関何れの處か是なる。)
煙波江上使人愁(煙波江上人をして愁へしむ。)
といふ「七言律詩」に於ける、
⑤ 不復返(復た返らず。)
といふ「漢文」を、「論理的」に「読解」しようとしも、「無駄」である。
令和02年08月15日、毛利太。
P≡兎を得る。
Q≡兎を得る。
とする。
従って、
(01)により、
(02)
P&Q≡兎を得て、兎を得る。
従って、
(02)により、
(03)
P&Q≡兎を二度得る。
従って、
(03)により、
(04)
~(P&Q)≡(兎を二度得る)といふことはない。
然るに、
(05)
(ⅰ)
1 (1)~(P&Q) A
2 (2) P A
3(3) Q A
23(4) P&Q 23&I
123(5)~(P&Q)&
(P&Q) 14&I
12 (6) ~Q 35RAA
1 (7) P→~Q 26CP
(ⅱ)
1 (1) P→~Q A
2 (2) P& Q A
2 (3) P 2&E
12 (4) ~Q 13MPP
2 (5) Q 2&E
12 (6) ~Q&Q 45&I
1 (7)~(P&Q) 26RAA
従って、
(05)により、
(06)
① ~(P& Q)
② P→~Q
に於いて、
①=② である。
従って、
(01)~(06)により、
(07)
① ~(P& Q)≡(兎を二度得る)といふことはない。
② P→~Q ≡(前に)兎を得ているならば、(次に)兎を得ることはない。
に於いて、
①=② である。
然るに、
(08)
[二] 守株(韓非子)
① 宋人有 耕田者。
② 田中有株、兎走觸株、折頸而死。
③ 因釋其耒而守株、冀復得兎。
④ 兎不可復得、而身爲宋國笑。
従って、
(08)により、
(09)
「括弧」を加へると、
① 宋人有〔耕(田)者〕。
② 田中有(株)、兎走觸(株)、折(頸)而死。
③ 因釋(其耒)而守(株)、冀〔復得(兎)〕。
④ 兎不〔可(復得)〕、而身爲(宋國笑)。
従って、
(09)により、
(10)
□( )⇒( )□
□〔 〕⇒( )□
といふ「移動」を行ふと、
① 宋人〔(田)耕者〕有。
② 田中(株)有、兎走(株)觸、(頸)折而死。
③ 因(其耒)釋而(株)守、〔復(兎)得〕冀。
④ 兎〔(復得)可〕不、而身(宋國笑)爲。
従って、
(10)により、
(11)
「平仮名」を加へると、
① 宋人に〔(田を)耕す者〕有り。
② 田中に(株)有り、兎走りて(株に)觸れ、(頸を)折りて死す。
③ 因りて(其の耒)釋て(株を)守り、〔復た(兎を)得んことを〕冀ふ。
④ 兎〔(復た得)可から〕ずして、身は(宋國の笑ひと)爲れり。
従って、
(07)~(11)により、
(12)
④ 兎不可復得=
④ 兎不〔可(復得)〕⇒
④ 兎〔(復た得)可から〕ず。
といふことは、
④ 一度目は、兎を得たが、二度目には、兎を得なかった。
といふことに、他ならない。
従って、
(12)により、
(13)
⑤ 不復返=
⑤ 不(復返)⇒
⑤ (復た返ら)ず=
⑤ 一度目は、返ったが、二度目には、返らなかった。
といふ、ことになる。
然るに、
(14)
崔顥の「黄鶴楼」詩の「黄鶴一去不二復返一」の場合は、
「前には一度返ったことがあるのか」と質問されると返答に窮し、「部分否定」とすることはできない。
(原田種成、私の漢文講義、1995年、156頁改)
従って、
(13)(14)により、
(15)
⑤ 昔人已乗黄鶴去(昔人已に黄鶴に乗りて去り、)
⑤ 此地空餘黄鶴楼(此地空しく餘す黄鶴楼。)
⑤ 黄鶴一去不復返(黄鶴一たび去りて復た返らず。)
に於ける、
⑤ 黄鶴一去不復返(黄鶴一たび去りて復た返らず。)
の場合は、「理詰めで(論理的に)」考へれば、
⑤ 黄鶴一去、不返(黄鶴一たび去りて、返らず。)
でなければ、ならない。
従って、
(12)~(15)により、
(16)
④ 兎不可復得=
④ 兎不〔可(復得)〕⇒
④ 兎〔(復た得)可から〕ず。
といふ「漢文」は、「論理的」であるが、
⑤ 不復返=
⑤ 不(復返)⇒
⑤ (復た返ら)ず=
といふ「漢文」は、「論理的」ではない。
然るに、
(17)
「この副詞は、どういう意味なのか?」と理づめで考えても、わからない箇所も多い。漢文の原文を中国語で読むと、それらの字は、音読のリズムを作るための「字数稼ぎ」や「箸休め」であることも多い。
(加藤徹、白文攻略 漢文法ひとり学び、2013年、18頁改)
従って、
(16)(17)
(18)
昔人已乗黄鶴去(昔人已に黄鶴に乗りて去り、)
此地空餘黄鶴楼(此地空しく餘す黄鶴楼。)
黄鶴一去不復返(黄鶴一たび去りて復た返らず。)
白雲千載空悠悠(白雲千載空しく悠悠。)
晴川歴歴漢陽樹(晴川歴歴たり漢陽の樹。)
芳艸萋萋鸚鵡洲(芳艸萋萋たり鸚鵡洲。)
日暮郷関何處是(日暮郷関何れの處か是なる。)
煙波江上使人愁(煙波江上人をして愁へしむ。)
といふ「七言律詩」に於ける、
⑤ 不復返(復た返らず。)
といふ「漢文」を、「論理的」に「読解」しようとしも、「無駄」である。
令和02年08月15日、毛利太。
「全部否定」と「部分否定」。
(01)
(ⅱ)
1(1) ∀x(Fx→~Gx) A
1(2) Fa→~Ga 1UE
1(3) ~Fa∨~Ga 2含意の定義
1(4) ~(Fa& Ga) 3ド・モルガンの法則
1(5)∀x~(Fx& Gx) 4UI
1(6)~∃x(Fx& Gx) 5量化子の関係
(ⅲ)
1(1)~∃x(Fx& Gx) A
1(2)∀x~(Fx& Gx) 1量化子の関係
1(3) ~(Fa& Ga) 1UE
1(4) ~Fa∨~Ga 3ド・モルガンの法則
1(5) Fa→~Ga 4ド・モルガンの法則
1(6) ∀x(Fx→~Gx) 5UI
従って、
(01)により、
(02)
② ∀x(Fx→~Gx)≡すべてのxについて(xがFならば、xはGでない)。
③ ~∃x(Fx& Gx)≡(Fであって、Gであるx)は存在しない。
に於いて、
②=③ である。
従って、
(02)により、
(03)
② ∀x(馬x→~千理x)≡すべての馬は、千里ではない。
③ ~∃x(馬x& 千里x)≡千里の馬は存在しない。
然るに、
(04)
① 千里馬常不レ有≡千里の馬は、常に有らず。
従って、
(03)(04)により、
(05)
① 千里馬常不レ有≡千里の馬は、常に有らず。
② ∀x(馬x→~千理x)≡すべての馬は、千里ではない。
③ ~∃x(馬x& 千里x)≡千里の馬は存在しない。
に於いて、
①=②=③ である。
cf.
全部否定(All negative)
(06)
(ⅴ)
1 (1)~∀x(Fx→Gx) A
1 (2)∃x~(Fx→Gx) 1量化子の関係
3(3) ~(Fa→Ga) A
3(4) ~(~Fa∨Ga) 3含意の定義
3(5) Fa&~Ga 4ド・モルガンの法則
3(6)∃x(Fx&~Gx) 5EI
1 (7)∃x(Fx&~Gx) 136EE
(ⅵ)
1 (1)∃x(Fx&~Gx) A
2(2) Fa&~Ga A
2(3) ~(~Fa∨Ga) 2ド・モルガンの法則
2(4) ~(Fa→Ga) 3含意の定義
2(5)∃x~(Fx→Gx) 4EI
1 (6)∃x~(Fx→Gx) 125EE
1 (7)~∀x(Fx→Gx) 6量化子の関係
従って、
(06)により、
(07)
⑤ ~∀x(Fx→ Gx)≡(すべてのxについて(xがFならば、xはGである))といふわけではない。
⑥ ∃x(Fx&~Gx)≡(Fであって、Gでないx)が存在する。
に於いて、
⑤=⑥ である。
従って、
(07)により、
(08)
⑤ ~∀x(馬x→ 千里x)≡(すべての馬が、千里である)といふわけではない。
⑥ ∃x(馬x&~千里x)≡(千里ではない、馬)が存在する。
然るに、
(09)
④ 千里馬不二常有一≡千里の馬は、常には有らず。
従って、
(08)(09)により、
(10)
④ 千里馬不二常有一≡千里の馬は、常には有らず。
⑤ ~∀x(馬x→ 千里x)≡(すべての馬が、千里である)といふわけではない。
⑥ ∃x(馬x&~千里x)≡(千里ではない、馬)が存在する。
に於いて、
④=⑤=⑥ である。
cf.
部分否定(Partially negative)
然るに、
(11)
① 千里馬常不有≡千里の馬は、常に、有らず。
④ 千里馬不常有≡千里の馬は、常には有らず。
といふ「漢文」は、「順番」に、
① 千里馬常レ不レ有≡千里の馬は、有ら不ること、常なり。
④ 千里馬不レ常レ有≡千里の馬は、有ること、常なら不。
といふ風にも、「読むこと」が出来る。
cf.
(原田種成、私の漢文講義、1995年、56頁)
令和02年08月15日、毛利太。
(ⅱ)
1(1) ∀x(Fx→~Gx) A
1(2) Fa→~Ga 1UE
1(3) ~Fa∨~Ga 2含意の定義
1(4) ~(Fa& Ga) 3ド・モルガンの法則
1(5)∀x~(Fx& Gx) 4UI
1(6)~∃x(Fx& Gx) 5量化子の関係
(ⅲ)
1(1)~∃x(Fx& Gx) A
1(2)∀x~(Fx& Gx) 1量化子の関係
1(3) ~(Fa& Ga) 1UE
1(4) ~Fa∨~Ga 3ド・モルガンの法則
1(5) Fa→~Ga 4ド・モルガンの法則
1(6) ∀x(Fx→~Gx) 5UI
従って、
(01)により、
(02)
② ∀x(Fx→~Gx)≡すべてのxについて(xがFならば、xはGでない)。
③ ~∃x(Fx& Gx)≡(Fであって、Gであるx)は存在しない。
に於いて、
②=③ である。
従って、
(02)により、
(03)
② ∀x(馬x→~千理x)≡すべての馬は、千里ではない。
③ ~∃x(馬x& 千里x)≡千里の馬は存在しない。
然るに、
(04)
① 千里馬常不レ有≡千里の馬は、常に有らず。
従って、
(03)(04)により、
(05)
① 千里馬常不レ有≡千里の馬は、常に有らず。
② ∀x(馬x→~千理x)≡すべての馬は、千里ではない。
③ ~∃x(馬x& 千里x)≡千里の馬は存在しない。
に於いて、
①=②=③ である。
cf.
全部否定(All negative)
(06)
(ⅴ)
1 (1)~∀x(Fx→Gx) A
1 (2)∃x~(Fx→Gx) 1量化子の関係
3(3) ~(Fa→Ga) A
3(4) ~(~Fa∨Ga) 3含意の定義
3(5) Fa&~Ga 4ド・モルガンの法則
3(6)∃x(Fx&~Gx) 5EI
1 (7)∃x(Fx&~Gx) 136EE
(ⅵ)
1 (1)∃x(Fx&~Gx) A
2(2) Fa&~Ga A
2(3) ~(~Fa∨Ga) 2ド・モルガンの法則
2(4) ~(Fa→Ga) 3含意の定義
2(5)∃x~(Fx→Gx) 4EI
1 (6)∃x~(Fx→Gx) 125EE
1 (7)~∀x(Fx→Gx) 6量化子の関係
従って、
(06)により、
(07)
⑤ ~∀x(Fx→ Gx)≡(すべてのxについて(xがFならば、xはGである))といふわけではない。
⑥ ∃x(Fx&~Gx)≡(Fであって、Gでないx)が存在する。
に於いて、
⑤=⑥ である。
従って、
(07)により、
(08)
⑤ ~∀x(馬x→ 千里x)≡(すべての馬が、千里である)といふわけではない。
⑥ ∃x(馬x&~千里x)≡(千里ではない、馬)が存在する。
然るに、
(09)
④ 千里馬不二常有一≡千里の馬は、常には有らず。
従って、
(08)(09)により、
(10)
④ 千里馬不二常有一≡千里の馬は、常には有らず。
⑤ ~∀x(馬x→ 千里x)≡(すべての馬が、千里である)といふわけではない。
⑥ ∃x(馬x&~千里x)≡(千里ではない、馬)が存在する。
に於いて、
④=⑤=⑥ である。
cf.
部分否定(Partially negative)
然るに、
(11)
① 千里馬常不有≡千里の馬は、常に、有らず。
④ 千里馬不常有≡千里の馬は、常には有らず。
といふ「漢文」は、「順番」に、
① 千里馬常レ不レ有≡千里の馬は、有ら不ること、常なり。
④ 千里馬不レ常レ有≡千里の馬は、有ること、常なら不。
といふ風にも、「読むこと」が出来る。
cf.
(原田種成、私の漢文講義、1995年、56頁)
令和02年08月15日、毛利太。
2020年8月14日金曜日
「漢作文」の「仕方」について。
(01)
① 世有伯楽、然後有千里馬=
① 世有二伯楽一、然後有二千里馬一=
① 世有(伯楽)然後有(千里馬)⇒
① 世(伯楽)有然後(千里馬)有=
① 世に(伯楽)有りて、然る後に(千里馬)有り=
① 世の中に、伯楽がゐて、初めて、千里馬もゐる=
① 世の中に、伯楽がゐなければ、千里の馬もゐない。
然るに、
(02)
② 無世不有伯楽而有千里馬=
② 無下世不レ有二伯楽一而有中千里馬上=
② 無[世不〔有(伯楽)〕而有(千里馬)]⇒
② [世〔(伯楽)有〕不而(千里馬)有]無=
② [世に〔(伯楽)有ら〕不して(千里馬)有るは]無し=
② 世の中に伯楽がゐないのに、千里の馬がゐるといふことは無い。
然るに、
(03)
① 世の中に、伯楽がゐなければ、千里の馬もゐない。
② 世の中に、伯楽がゐないのに、千里の馬がゐるといふことは無い。
に於いて、
①=② は、「直観」として、「正しい」。
従って、
(01)(02)(03)により、
(04)
① 世有伯楽、然後有千里馬(世に伯楽有りて、然る後に千里馬有り)。
② 無世不有伯楽而有千里馬(世に伯楽有らずして千里馬有るは無し)。
に於いて、
①=② である。
然るに、
(05)
① 世有伯楽、然後有千里馬。
② 無世不有伯楽而有千里馬。
に於いて、
① を書いたのは、韓愈であって、
② を書いたのは、韓愈ではなく、日本語しか話せない、私である。
然るに、
(06)
出典: フリー百科事典『ウィキペディア(Wikipedia)』
韓 愈(かん ゆ、768年(大暦3年) - 824年12月25日(長慶4年12月2日))は、中国唐代中期を代表する文人・士大夫である。字は退之(たいし)。
従って、
(05)(06)により、
(07)
① 世有伯楽、然後有千里馬。
② 無世不有伯楽而有千里馬。
に於いて、
① は、確かに、「漢文」であるが、
② は、あるいは「漢文」ではないのかも、知れない(?)。
然るに、
(08)
日本人が漢文を書く場合、漢文直訳体の日本語である漢文訓読は、有力な道具となり得る。実際に漢詩・漢文を自分で書いてみればわかることだが、日本人が音読直読だけで純正漢文を書くことは、なかなかに難しい(そもそも漢文の音読直読ができる現代中国人でも、純正漢文が書ける者は少ない)。
(加藤徹 他、「訓読」論、2008年、265頁改)
従って、
(08)により、
(09)
「訓読(漢文直訳体の日本語)」が書けて、その、
「訓読(漢文直訳体の日本語)」を、「漢文の語順」に、「書き換へる」ことが出来るのであれば、「中国語を、全く知らない、私のやうな日本人」であっても、
② 無世不有伯楽而有千里馬。
③ 我非必不求以解中文法解漢文者也。
といふ「漢文」くらいは、書けることになる。
従って、
(08)(09)により、
(10)
② 世に伯楽有らずして千里馬有るは無し。
③ 我は必ずしも中文を解する法を以て漢文を解せんことを求め不る者に非ざるなり。
といふ「訓読(漢文直訳体)」を、
② 無[世不〔有(伯楽)〕而有(千里馬)]。
③ 我非〈必不{求[以〔解(中文)法〕解(漢文)]}者〉也。
といふ「漢文の語順」に、改めた「それ」が、
② 無世不有伯楽而有千里馬。
③ 我非必不求以解中文法解漢文者也。
といふ「漢文」である。
といふ、ことになる。
然るに、
(11)
② If 伯楽 is not in the country, it is impossible for 千里馬 to be in the country.
③ I am not necesarily a person who doesn't try to understand Chinese classics using the method of understanding chinese.
といふ「英文(?)」を、「グーグル翻訳」に掛けたところ、
② 伯楽がその国にいなければ、千里馬がその国にいることは不可能です。
③ 私は必ずしも中国語を理解する方法を使用して中国の古典を理解しようとしない人ではありません。
といふ「翻訳」を、得ることが出来たため、果たして、
② If 伯楽 is not in the country, it is impossible for 千里馬 to be in the country.
③ I am not necesarily a person who doesn't try to understand Chinese classics using the method of understanding chinese.
は、「英語」であった。
然るに、
(12)
② 世に伯楽有らずして千里馬有るは無し。
③ 我は必ずしも中文を解する法を以て漢文を解せんことを求め不る者に非ざるなり。
といふ「訓読(漢文直訳体)」を、
② 無[世不〔有(伯楽)〕而有(千里馬)]。
③ 我非〈必不{求[以〔解(中文)法〕解(漢文)]}者〉也。
といふ「漢文の語順」に、改めたとしても、もちろん、
② If 伯楽 is not in the country, it is impossible for 千里馬 to be in the country.
③ I am not necesarily a person who doesn't try to understand Chinese classics using the method of understanding chinese.
といふ「英語」には、ならない。
従って、
(10)(11)(12)により、
(13)
「漢作文」と、
「英作文」とでは、「やってゐること」が、「全然、違ふ」。
然るに、
(10)~(13)により、
(14)
「結論」だけを、述べるとすると、言ふまでもなく、
② 世に伯楽有らずして千里馬有るは無し。
③ 我は必ずしも中文を解する法を以て漢文を解せんことを求め不る者に非ざるなり。
といふ「訓読(漢文直訳体)」を、
② 無[世不〔有(伯楽)〕而有(千里馬)]。
③ 我非〈必不{求[以〔解(中文)法〕解(漢文)]}者〉也。
といふ「漢文の語順」に、改めるよりも、
② 国に伯楽がいないのに、千里馬がいることは、無い。
③ 私は、必ずしも中国語を理解する方法を用ひて、漢文を理解することを求めない者では、ないのです。
といふ「日本語」を、
② If 伯楽 is not in the country, it is impossible for 千里馬 to be in the country.
③ I am not necesarily a person who doesn't try to understand Chinese classics using the method of understanding chinese.
といふ「英語の語順」に、改める方が、「遥かに、難しい」。
然るに、
(15)
返り点・送り仮名をつけて訓読みすることが「日本人として徹底的にわかることを意味する」というところに私は大きな衝撃を受けた。それに対して韓国ではそのまま外国語として音読みし、翻訳して意味を理解する道をとった(呉善花、漢字廃止で韓国に何が起きたか、2008年、89・90頁)。
然るに、
(16)
少数の天才的なひとたちあるいは秀才たちは、返り点・送り仮名をつけなくとも正確な漢文の理解に至るであろう。李氏朝鮮の儒学のレベルの高さはそういう少数の秀才や天才に負うものである。・・・・・・しかし大多数のコリア人にとって、シナの古典は近づき難い高峰であった」(渡辺昇一、『英文法を撫でる』PHP新書、頁は不明)。
従って、
(14)(15)(16)により、
(17)
日本のような漢文訓読法がなかった朝鮮では、純正漢文を読めたのは上流知識人に限られた。読書層は日本にくらべると薄く、朝鮮の対日認識は限定的なものにとどまった。極論すれば、漢文訓読法をもてなかったことが、朝鮮が近代において日本に圧倒されるようになった遠因の一つとなった(加藤徹、漢文の素養、2006年、199頁)。
といふことは、「確かに、さうであったのであらう」と、思はれる。
然るに、
(18)
しかし、倉石の鋭さは、なによりもまず先にも触れた「漢文訓読塩鮭論」に余すところなく現われていると言える。それはすなわち次のような一節である。
論語でも孟子でも、訓読をしないと気分が出ないといふ人もあるが、これは孔子や孟子に日本人になってもらはないと気が済まないのと同様で、漢籍が国書であり、漢文が国語であった時代の遺風である。支那の書物が、好い国語に翻訳されることは、もっとも望ましいことであるが、翻訳された結果は、多かれ少なかれその書物の持ち味を棄てることは免れない、立体的なものが平面化することが想像される。持ち味を棄て、平面化したものに慣れると、その方が好くなるのは、恐るべき麻痺であって、いはば信州に育ったものが、生きのよい魚よりも、塩鮭をうまいと思ふ様なものである(「訓読」論 東アジア漢文世界と日本語、中村春作・市來津由彦・田尻祐一郎・前田勉 共編、2008年、60頁)。
従って、
(16)(17)(18)により、
(19)
「漢文訓読法」があった日本に於いては、 「少数の天才的なひとたちあるいは秀才たち」ではなくとも、「正確な漢文の理解」が、「可能」であったにも、かかわらず、
「漢文訓読法」を「否定」することによって、「少数の天才的なひとたちあるいは秀才たち」ではなくては、「正確な漢文の理解」を「不可能」な「モノ」に、変へてしまった。
といふ、その人こそが、倉石先生であった。 といふ、ことになる。
令和02年08月14日、毛利太。
① 世有伯楽、然後有千里馬=
① 世有二伯楽一、然後有二千里馬一=
① 世有(伯楽)然後有(千里馬)⇒
① 世(伯楽)有然後(千里馬)有=
① 世に(伯楽)有りて、然る後に(千里馬)有り=
① 世の中に、伯楽がゐて、初めて、千里馬もゐる=
① 世の中に、伯楽がゐなければ、千里の馬もゐない。
然るに、
(02)
② 無世不有伯楽而有千里馬=
② 無下世不レ有二伯楽一而有中千里馬上=
② 無[世不〔有(伯楽)〕而有(千里馬)]⇒
② [世〔(伯楽)有〕不而(千里馬)有]無=
② [世に〔(伯楽)有ら〕不して(千里馬)有るは]無し=
② 世の中に伯楽がゐないのに、千里の馬がゐるといふことは無い。
然るに、
(03)
① 世の中に、伯楽がゐなければ、千里の馬もゐない。
② 世の中に、伯楽がゐないのに、千里の馬がゐるといふことは無い。
に於いて、
①=② は、「直観」として、「正しい」。
従って、
(01)(02)(03)により、
(04)
① 世有伯楽、然後有千里馬(世に伯楽有りて、然る後に千里馬有り)。
② 無世不有伯楽而有千里馬(世に伯楽有らずして千里馬有るは無し)。
に於いて、
①=② である。
然るに、
(05)
① 世有伯楽、然後有千里馬。
② 無世不有伯楽而有千里馬。
に於いて、
① を書いたのは、韓愈であって、
② を書いたのは、韓愈ではなく、日本語しか話せない、私である。
然るに、
(06)
出典: フリー百科事典『ウィキペディア(Wikipedia)』
韓 愈(かん ゆ、768年(大暦3年) - 824年12月25日(長慶4年12月2日))は、中国唐代中期を代表する文人・士大夫である。字は退之(たいし)。
従って、
(05)(06)により、
(07)
① 世有伯楽、然後有千里馬。
② 無世不有伯楽而有千里馬。
に於いて、
① は、確かに、「漢文」であるが、
② は、あるいは「漢文」ではないのかも、知れない(?)。
然るに、
(08)
日本人が漢文を書く場合、漢文直訳体の日本語である漢文訓読は、有力な道具となり得る。実際に漢詩・漢文を自分で書いてみればわかることだが、日本人が音読直読だけで純正漢文を書くことは、なかなかに難しい(そもそも漢文の音読直読ができる現代中国人でも、純正漢文が書ける者は少ない)。
(加藤徹 他、「訓読」論、2008年、265頁改)
従って、
(08)により、
(09)
「訓読(漢文直訳体の日本語)」が書けて、その、
「訓読(漢文直訳体の日本語)」を、「漢文の語順」に、「書き換へる」ことが出来るのであれば、「中国語を、全く知らない、私のやうな日本人」であっても、
② 無世不有伯楽而有千里馬。
③ 我非必不求以解中文法解漢文者也。
といふ「漢文」くらいは、書けることになる。
従って、
(08)(09)により、
(10)
② 世に伯楽有らずして千里馬有るは無し。
③ 我は必ずしも中文を解する法を以て漢文を解せんことを求め不る者に非ざるなり。
といふ「訓読(漢文直訳体)」を、
② 無[世不〔有(伯楽)〕而有(千里馬)]。
③ 我非〈必不{求[以〔解(中文)法〕解(漢文)]}者〉也。
といふ「漢文の語順」に、改めた「それ」が、
② 無世不有伯楽而有千里馬。
③ 我非必不求以解中文法解漢文者也。
といふ「漢文」である。
といふ、ことになる。
然るに、
(11)
② If 伯楽 is not in the country, it is impossible for 千里馬 to be in the country.
③ I am not necesarily a person who doesn't try to understand Chinese classics using the method of understanding chinese.
といふ「英文(?)」を、「グーグル翻訳」に掛けたところ、
② 伯楽がその国にいなければ、千里馬がその国にいることは不可能です。
③ 私は必ずしも中国語を理解する方法を使用して中国の古典を理解しようとしない人ではありません。
といふ「翻訳」を、得ることが出来たため、果たして、
② If 伯楽 is not in the country, it is impossible for 千里馬 to be in the country.
③ I am not necesarily a person who doesn't try to understand Chinese classics using the method of understanding chinese.
は、「英語」であった。
然るに、
(12)
② 世に伯楽有らずして千里馬有るは無し。
③ 我は必ずしも中文を解する法を以て漢文を解せんことを求め不る者に非ざるなり。
といふ「訓読(漢文直訳体)」を、
② 無[世不〔有(伯楽)〕而有(千里馬)]。
③ 我非〈必不{求[以〔解(中文)法〕解(漢文)]}者〉也。
といふ「漢文の語順」に、改めたとしても、もちろん、
② If 伯楽 is not in the country, it is impossible for 千里馬 to be in the country.
③ I am not necesarily a person who doesn't try to understand Chinese classics using the method of understanding chinese.
といふ「英語」には、ならない。
従って、
(10)(11)(12)により、
(13)
「漢作文」と、
「英作文」とでは、「やってゐること」が、「全然、違ふ」。
然るに、
(10)~(13)により、
(14)
「結論」だけを、述べるとすると、言ふまでもなく、
② 世に伯楽有らずして千里馬有るは無し。
③ 我は必ずしも中文を解する法を以て漢文を解せんことを求め不る者に非ざるなり。
といふ「訓読(漢文直訳体)」を、
② 無[世不〔有(伯楽)〕而有(千里馬)]。
③ 我非〈必不{求[以〔解(中文)法〕解(漢文)]}者〉也。
といふ「漢文の語順」に、改めるよりも、
② 国に伯楽がいないのに、千里馬がいることは、無い。
③ 私は、必ずしも中国語を理解する方法を用ひて、漢文を理解することを求めない者では、ないのです。
といふ「日本語」を、
② If 伯楽 is not in the country, it is impossible for 千里馬 to be in the country.
③ I am not necesarily a person who doesn't try to understand Chinese classics using the method of understanding chinese.
といふ「英語の語順」に、改める方が、「遥かに、難しい」。
然るに、
(15)
返り点・送り仮名をつけて訓読みすることが「日本人として徹底的にわかることを意味する」というところに私は大きな衝撃を受けた。それに対して韓国ではそのまま外国語として音読みし、翻訳して意味を理解する道をとった(呉善花、漢字廃止で韓国に何が起きたか、2008年、89・90頁)。
然るに、
(16)
少数の天才的なひとたちあるいは秀才たちは、返り点・送り仮名をつけなくとも正確な漢文の理解に至るであろう。李氏朝鮮の儒学のレベルの高さはそういう少数の秀才や天才に負うものである。・・・・・・しかし大多数のコリア人にとって、シナの古典は近づき難い高峰であった」(渡辺昇一、『英文法を撫でる』PHP新書、頁は不明)。
従って、
(14)(15)(16)により、
(17)
日本のような漢文訓読法がなかった朝鮮では、純正漢文を読めたのは上流知識人に限られた。読書層は日本にくらべると薄く、朝鮮の対日認識は限定的なものにとどまった。極論すれば、漢文訓読法をもてなかったことが、朝鮮が近代において日本に圧倒されるようになった遠因の一つとなった(加藤徹、漢文の素養、2006年、199頁)。
といふことは、「確かに、さうであったのであらう」と、思はれる。
然るに、
(18)
しかし、倉石の鋭さは、なによりもまず先にも触れた「漢文訓読塩鮭論」に余すところなく現われていると言える。それはすなわち次のような一節である。
論語でも孟子でも、訓読をしないと気分が出ないといふ人もあるが、これは孔子や孟子に日本人になってもらはないと気が済まないのと同様で、漢籍が国書であり、漢文が国語であった時代の遺風である。支那の書物が、好い国語に翻訳されることは、もっとも望ましいことであるが、翻訳された結果は、多かれ少なかれその書物の持ち味を棄てることは免れない、立体的なものが平面化することが想像される。持ち味を棄て、平面化したものに慣れると、その方が好くなるのは、恐るべき麻痺であって、いはば信州に育ったものが、生きのよい魚よりも、塩鮭をうまいと思ふ様なものである(「訓読」論 東アジア漢文世界と日本語、中村春作・市來津由彦・田尻祐一郎・前田勉 共編、2008年、60頁)。
従って、
(16)(17)(18)により、
(19)
「漢文訓読法」があった日本に於いては、 「少数の天才的なひとたちあるいは秀才たち」ではなくとも、「正確な漢文の理解」が、「可能」であったにも、かかわらず、
「漢文訓読法」を「否定」することによって、「少数の天才的なひとたちあるいは秀才たち」ではなくては、「正確な漢文の理解」を「不可能」な「モノ」に、変へてしまった。
といふ、その人こそが、倉石先生であった。 といふ、ことになる。
令和02年08月14日、毛利太。
「漢文」に於ける、「倒置」と「提示語的用法」。
(01)
⑭ 小学而大遺「学レ小而遺レ大」とすべきところを意味を強めるために倒置した。
「小学レ之、大遺レ之」の「之」を省略した形。このような場合には、普通の場合
との区別がよくわかるように「小ハ・・・大ハ・・・」または「小ヲバ・・・大ヲバ・・・」などと読む。
(三省堂、明解古典学習シリーズ20、1963年、54頁)
従って、
(01)により、
(02)
「学小而遺大」といふ、「漢文としての、通常の語順」を、
「小学而大遺」といふ、「国語としての、通常の語順」に変へた場合は、
「(漢文としての)倒置」となり、その「結果」として、「小(補語)」と「大(補語)」が、「強調」される。
従って、
(02)により、
(03)
例へば、
① 入(危邦)⇒
① (危邦)入=
① (危邦に)入る。
に対して、
② 危邦入=危邦に入る。
の場合は、
②「危邦(補語)」が、「強調(倒置)」されてゐる(?)。
従って、
(03)により、
(04)
② 不〔入(危邦)〕⇒
② 〔(危邦)入〕不=
② 〔(危邦に)入ら〕ず。
に対して、
③ 危邦不(入)⇒
③ 危邦(入)不=
③ 危邦に(入ら)ず。
の場合も、
③「危邦(補語)」が、「強調(倒置)」されてゐる(?)。
然るに、
(05)
危険の兆候のある国には、足を踏み入れない。
(吉川幸次郎、論語上、1960年、252頁)
従って、
(04)(05)により、
(06)
「日本語」としては、
② 危邦に(入ら)ず。
ではなく、
③ 危邦には(入ら)ず。
である。
然るに、
(07)
枕草子の専門家が次のような頭注をつけている。
「春は」は総主語の提示語的用法。「春は曙いとをかし」などの略で。「曙いとをかし」などの述部の主語。
総主語の提示語のような総主語であり、かつ、主語である、とは難儀な話である。
(三上章、日本語の論理、1963年、148・9頁)
従って、
(07)により、
(08)
「提示語(~ハ)」といふ「文法用語」がある。
従って、
(06)(08)により、
(09)
② 危邦に (入ら)ず。
③ 危邦には(入ら)ず。
に於いて、
②「危邦」は、「 補語 」であるが、
③「危邦」は、「提示語」であって、
「日本語」に訳した際に、「提示語(ハを伴ふ)」となる「漢文の補語」は、「倒置」をしても、「強調」されることはない。
といふ風に、「仮定A」する。
然るに、
(10)
④ 父母の年ハ、知らざるべからざるなり(論語、里仁第四 21)。
の場合は、
④ 父母之年、不レ可レ不レ知也。
である。
従って、
(09)(10)により、
(11)
「仮定A]を認めるのであれば、
④ 父母之年、不レ可レ不レ知也。
に於ける、
④「父母之年」は、「倒置による、強調形」ではなく、「提示語」である。
然るに、
(12)
⑤ 世に伯楽有りて、然る後に千里の馬有り。千里の馬ハ常に有れども、伯楽ハ常には有らず(韓愈、雜説)。
の場合は、
⑤ 世有二伯楽一、然後有二千里馬一。千里馬常有、而伯楽不二常有一。
である。
従って、
(09)(10)(11)(12)により、
(13)
「仮定A]を認めるのであれば、
⑤ 千里馬常有、而伯楽不二常有一。
に於ける、
⑤「千里馬」は、「倒置による、強調形」ではなく、「提示語」である。
⑤「 伯楽 」も、「倒置による、強調形」ではなく、「提示語」である。
令和02年08月14日、毛利太。
⑭ 小学而大遺「学レ小而遺レ大」とすべきところを意味を強めるために倒置した。
「小学レ之、大遺レ之」の「之」を省略した形。このような場合には、普通の場合
との区別がよくわかるように「小ハ・・・大ハ・・・」または「小ヲバ・・・大ヲバ・・・」などと読む。
(三省堂、明解古典学習シリーズ20、1963年、54頁)
従って、
(01)により、
(02)
「学小而遺大」といふ、「漢文としての、通常の語順」を、
「小学而大遺」といふ、「国語としての、通常の語順」に変へた場合は、
「(漢文としての)倒置」となり、その「結果」として、「小(補語)」と「大(補語)」が、「強調」される。
従って、
(02)により、
(03)
例へば、
① 入(危邦)⇒
① (危邦)入=
① (危邦に)入る。
に対して、
② 危邦入=危邦に入る。
の場合は、
②「危邦(補語)」が、「強調(倒置)」されてゐる(?)。
従って、
(03)により、
(04)
② 不〔入(危邦)〕⇒
② 〔(危邦)入〕不=
② 〔(危邦に)入ら〕ず。
に対して、
③ 危邦不(入)⇒
③ 危邦(入)不=
③ 危邦に(入ら)ず。
の場合も、
③「危邦(補語)」が、「強調(倒置)」されてゐる(?)。
然るに、
(05)
危険の兆候のある国には、足を踏み入れない。
(吉川幸次郎、論語上、1960年、252頁)
従って、
(04)(05)により、
(06)
「日本語」としては、
② 危邦に(入ら)ず。
ではなく、
③ 危邦には(入ら)ず。
である。
然るに、
(07)
枕草子の専門家が次のような頭注をつけている。
「春は」は総主語の提示語的用法。「春は曙いとをかし」などの略で。「曙いとをかし」などの述部の主語。
総主語の提示語のような総主語であり、かつ、主語である、とは難儀な話である。
(三上章、日本語の論理、1963年、148・9頁)
従って、
(07)により、
(08)
「提示語(~ハ)」といふ「文法用語」がある。
従って、
(06)(08)により、
(09)
② 危邦に (入ら)ず。
③ 危邦には(入ら)ず。
に於いて、
②「危邦」は、「 補語 」であるが、
③「危邦」は、「提示語」であって、
「日本語」に訳した際に、「提示語(ハを伴ふ)」となる「漢文の補語」は、「倒置」をしても、「強調」されることはない。
といふ風に、「仮定A」する。
然るに、
(10)
④ 父母の年ハ、知らざるべからざるなり(論語、里仁第四 21)。
の場合は、
④ 父母之年、不レ可レ不レ知也。
である。
従って、
(09)(10)により、
(11)
「仮定A]を認めるのであれば、
④ 父母之年、不レ可レ不レ知也。
に於ける、
④「父母之年」は、「倒置による、強調形」ではなく、「提示語」である。
然るに、
(12)
⑤ 世に伯楽有りて、然る後に千里の馬有り。千里の馬ハ常に有れども、伯楽ハ常には有らず(韓愈、雜説)。
の場合は、
⑤ 世有二伯楽一、然後有二千里馬一。千里馬常有、而伯楽不二常有一。
である。
従って、
(09)(10)(11)(12)により、
(13)
「仮定A]を認めるのであれば、
⑤ 千里馬常有、而伯楽不二常有一。
に於ける、
⑤「千里馬」は、「倒置による、強調形」ではなく、「提示語」である。
⑤「 伯楽 」も、「倒置による、強調形」ではなく、「提示語」である。
令和02年08月14日、毛利太。
2020年8月13日木曜日
「千里馬常有、而伯楽不常有。」の「述語論理」。
(01)
(ⅰ)
1 (1)~∀x{千里馬x→ ∃y(伯楽y&食yx)} A
1 (2)∃x~{千里馬x→ ∃y(伯楽y&食yx)} 1量化子の関係
3(3) ~{千里馬a→ ∃y(伯楽y&食ya)} A
3(4) ~{~千里馬a∨ ∃y(伯楽y&食ya)} 3含意の定義
3(5) 千里馬a&~∃y(伯楽y&食ya) 4ド・モルガンの法則
3(6) 千里馬a 5&E
3(7) ~∃y(伯楽y&食ya) 5&E
3(8) ∀y~(伯楽y&食ya) 7量化子の関係
3(9) ~(伯楽b&食ba) 8UE
3(ア) ~伯楽b∨~食ba 9ド・モルガンの法則
3(イ) 伯楽b→~食ba ア含意の定義
3(ウ) ∀y(伯楽y→~食ya) イUI
3(エ) 千里馬a&∀y(伯楽y→~食ya) 6ウ&I
3(オ) ∃x{千里馬x&∀y(伯楽y→~食yx)} エEI
1 (カ) ∃x{千里馬x&∀y(伯楽y→~食yx)} 23オEE
(ⅱ)
1 (1) ∃x{千里馬x&∀y(伯楽y→~食yx)} A
2(2) 千里馬a&∀y(伯楽y→~食ya) A
2(3) 千里馬a 2&E
2(4) ∀y(伯楽y→~食ya) 2&E
2(5) 伯楽b→~食ba 4UE
2(6) ~伯楽b∨~食ba 5含意の定義
2(7) ~(伯楽b&食ba) 6ド・モルガンの法則
2(8) ∀y~(伯楽y&食ya) 7UI
2(9) ~∃y(伯楽y&食ya) 8量化子の関係
2(ア) 千里馬a&~∃y(伯楽y&食ya) 39&I
2(イ) ~{~千里馬a∨ ∃y(伯楽y&食ya)} ア、ド・モルガンの法則
2(ウ) ~{千里馬a→ ∃y(伯楽y&食ya)} イ含意の定義
2(エ)∃x~{千里馬a→ ∃y(伯楽y&食ya)} ウEI
1 (オ)∃x~{千里馬a→ ∃y(伯楽y&食ya)} 12エEE
1 (カ)~∀x{千里馬x→ ∃y(伯楽y&食yx)} オ量化子の関係
従って、
(01)により、
(02)
① ~∀x{千里馬x→∃y(伯楽y& 食yx)}
② ∃x{千里馬x&∀y(伯楽y→~食yx)}
に於いて、すなはち、
① すべてのxについて{xが千里の馬であるならば、あるyは伯楽であって、yはxを養ふ}といふわけではない。
② あるxについて{xは千里の馬であって、すべてのyについて(yが伯楽であるならば、yはxを養はない)}。
に於いて、
①=② である。
然るに、
(03)
① すべてのxについて{xが千里の馬であるならば、あるyは伯楽であって、yはxを養ふ}といふわけではない。
② あるxについて{xは千里の馬であって、すべてのyについて(yが伯楽であるならば、yはxを養はない)}。
といふことは、
③(千里の馬がゐるならば、その、すべての千里の馬に対して、伯楽がゐる)といふわけではない。
といふ、ことである。
然るに、
(04)
① ∃x(千里馬)⇔「千里の馬は存在する。」
② ~∃x(千里馬)⇔「千里の馬は存在しない。」
③ ~~∃x(千里馬)⇔「千里の馬は存在しない、といふことはない。」
に於いて、
①=③ は、「二重否定律(DN)」である。
然るに、
(05)
③「千里の馬は存在しない、といふことはない。」
④「千里の馬は、常にゐる。」
に於いて、
③=④ である。
従って、
(04)(05)により、
(06)
① ∃x(千里馬)⇔「千里の馬は常にゐる。」
従って、
(02)(03)(06)により、
(07)
① ∃x(千里馬)&~∀x{千里馬x→∃y(伯楽y&食yx)}
といふ「述語論理式」は、
① 千里の馬は常にゐるが、(千里の馬がゐるならば、その、すべての千里の馬に対して、伯楽がゐる)といふわけではない。
といふ、「意味」である。
然るに、
(08)
① 千里馬常有、而伯楽不ニ常有一。
① 千里の馬は常に有れども、伯楽は常にはあらず。
① 一日に千里走る名馬はいつでもいるのであるが(これを見わける)伯楽はいつもいるとはかぎらないのである。
(赤塚忠・遠藤哲夫、漢文の基礎、1973年、154頁)
従って、
(07)(08)により、
(09)
① 千里馬常有、而伯楽不ニ常有一。
といふ「漢文(部分否定形)」は、
① ∃x(千里馬)&~∀x{千里馬x→∃y(伯楽y&食yx)}
といふ「述語論理式」に、「相当」する。
令和02年08月13日、毛利太。
(ⅰ)
1 (1)~∀x{千里馬x→ ∃y(伯楽y&食yx)} A
1 (2)∃x~{千里馬x→ ∃y(伯楽y&食yx)} 1量化子の関係
3(3) ~{千里馬a→ ∃y(伯楽y&食ya)} A
3(4) ~{~千里馬a∨ ∃y(伯楽y&食ya)} 3含意の定義
3(5) 千里馬a&~∃y(伯楽y&食ya) 4ド・モルガンの法則
3(6) 千里馬a 5&E
3(7) ~∃y(伯楽y&食ya) 5&E
3(8) ∀y~(伯楽y&食ya) 7量化子の関係
3(9) ~(伯楽b&食ba) 8UE
3(ア) ~伯楽b∨~食ba 9ド・モルガンの法則
3(イ) 伯楽b→~食ba ア含意の定義
3(ウ) ∀y(伯楽y→~食ya) イUI
3(エ) 千里馬a&∀y(伯楽y→~食ya) 6ウ&I
3(オ) ∃x{千里馬x&∀y(伯楽y→~食yx)} エEI
1 (カ) ∃x{千里馬x&∀y(伯楽y→~食yx)} 23オEE
(ⅱ)
1 (1) ∃x{千里馬x&∀y(伯楽y→~食yx)} A
2(2) 千里馬a&∀y(伯楽y→~食ya) A
2(3) 千里馬a 2&E
2(4) ∀y(伯楽y→~食ya) 2&E
2(5) 伯楽b→~食ba 4UE
2(6) ~伯楽b∨~食ba 5含意の定義
2(7) ~(伯楽b&食ba) 6ド・モルガンの法則
2(8) ∀y~(伯楽y&食ya) 7UI
2(9) ~∃y(伯楽y&食ya) 8量化子の関係
2(ア) 千里馬a&~∃y(伯楽y&食ya) 39&I
2(イ) ~{~千里馬a∨ ∃y(伯楽y&食ya)} ア、ド・モルガンの法則
2(ウ) ~{千里馬a→ ∃y(伯楽y&食ya)} イ含意の定義
2(エ)∃x~{千里馬a→ ∃y(伯楽y&食ya)} ウEI
1 (オ)∃x~{千里馬a→ ∃y(伯楽y&食ya)} 12エEE
1 (カ)~∀x{千里馬x→ ∃y(伯楽y&食yx)} オ量化子の関係
従って、
(01)により、
(02)
① ~∀x{千里馬x→∃y(伯楽y& 食yx)}
② ∃x{千里馬x&∀y(伯楽y→~食yx)}
に於いて、すなはち、
① すべてのxについて{xが千里の馬であるならば、あるyは伯楽であって、yはxを養ふ}といふわけではない。
② あるxについて{xは千里の馬であって、すべてのyについて(yが伯楽であるならば、yはxを養はない)}。
に於いて、
①=② である。
然るに、
(03)
① すべてのxについて{xが千里の馬であるならば、あるyは伯楽であって、yはxを養ふ}といふわけではない。
② あるxについて{xは千里の馬であって、すべてのyについて(yが伯楽であるならば、yはxを養はない)}。
といふことは、
③(千里の馬がゐるならば、その、すべての千里の馬に対して、伯楽がゐる)といふわけではない。
といふ、ことである。
然るに、
(04)
① ∃x(千里馬)⇔「千里の馬は存在する。」
② ~∃x(千里馬)⇔「千里の馬は存在しない。」
③ ~~∃x(千里馬)⇔「千里の馬は存在しない、といふことはない。」
に於いて、
①=③ は、「二重否定律(DN)」である。
然るに、
(05)
③「千里の馬は存在しない、といふことはない。」
④「千里の馬は、常にゐる。」
に於いて、
③=④ である。
従って、
(04)(05)により、
(06)
① ∃x(千里馬)⇔「千里の馬は常にゐる。」
従って、
(02)(03)(06)により、
(07)
① ∃x(千里馬)&~∀x{千里馬x→∃y(伯楽y&食yx)}
といふ「述語論理式」は、
① 千里の馬は常にゐるが、(千里の馬がゐるならば、その、すべての千里の馬に対して、伯楽がゐる)といふわけではない。
といふ、「意味」である。
然るに、
(08)
① 千里馬常有、而伯楽不ニ常有一。
① 千里の馬は常に有れども、伯楽は常にはあらず。
① 一日に千里走る名馬はいつでもいるのであるが(これを見わける)伯楽はいつもいるとはかぎらないのである。
(赤塚忠・遠藤哲夫、漢文の基礎、1973年、154頁)
従って、
(07)(08)により、
(09)
① 千里馬常有、而伯楽不ニ常有一。
といふ「漢文(部分否定形)」は、
① ∃x(千里馬)&~∀x{千里馬x→∃y(伯楽y&食yx)}
といふ「述語論理式」に、「相当」する。
令和02年08月13日、毛利太。
「有(返読文字)る」と「在る」。
(01)
① 我有父母=
① 我有(父母)⇒
① 我(父母)有=
① 我に(父母)有り=
① I have parents.
(02)
② 人皆有兄弟=
② 人皆有(兄弟)⇒
② 人皆(兄弟)有=
② 人皆(兄弟)有り=
② Everybody has brothers.
従って、
(01)(02)により、
(03)
「有」とは、即ち、「Have(持つ)」である。
然るに、
(04)
【有】ユウ(イウ・ウ)、ある
〈解字〉会意。意符号「月」(肉)と音と意を表す「又(イウ・ウ)」(右手)。肉を己の所有とする意。
「有無」の「有」はその延長義。「有」は「もつ」が原義だから「・・・・・がある」にあたり「・・・・・である」ではない。(対)無。
(中沢希夫、同訓異字辞典、1980年、21頁)
従って、
(03)(04)により、
(05)
「有」の「原義」は、「持つ(Have)」である。
然るに、
(06)
③ 居上位而不驕=
③ 居(上位)而不(我驕)⇒
③ (上位)居而(驕)不=
③ (上位に)居て(驕ら)ず=
③ 上座に座ってゐても、驕らない。
然るに、
(07)
【在】サイ・ザイ、ある
〈字義〉ある・おる(在)。
(中沢希夫、同訓異字辞典、1980年、21頁)
(08)
【在】4881
(ロ)をる。云々にをる。
(大修館、大漢和辞典)
(09)
を・り【居る】[一](動詞)自ラ変
① 存在する。いる。ある。
② 座っている。
(旺文社、全訳古語辞典、2006年、935頁)
(10)
従って、
(06)~(10)により、
(11)
「在」の「原義」は、「座ってゐる(Sitting)」に近い。
従って、
(05)(11)により、
(12)
「有」の「原義」は、「持つ(他動詞)」であって、
「在」の「原義」は、「座ってゐる(自動詞)」に近い。
然るに、
(13)
存在と出現・消滅の表現法
存在を表す動詞として、古代においても、「有」と「在」とが常用されている。しかし、その存在するものと、存在する場所とをいふ単語の語順は、次のように、全く反対である。
A式 場所語―有―存在物
例 机上有レ書。(机上に書あり)
B式 存在物―在―場所語
例 書在ニ机上一。(書、机上にあり)
(鈴木直治、中国語と漢文、1975年、346頁)
従って、
(12)(13)により、
(14)
① 机上有書。
② 書在机上。
に於いても、
①「有」は「他動詞」の「語順」を取り、
②「在」は「自動詞」の「語順」を取る。
然るに、
(15)
主語や補語は省略されることが多い。
(片桐功雄、究める漢文、2010年、16頁改)
従って、
(14)(15)により、
(16)
① 机上有書。
② 書在机上。
といふ「漢文」は、
① 机上(主語)と、
② 机上(補語)が、「省略」されて、
① 有書。
② 書在。
となることが、多い。 然るに、
(17)
「漢文」と「日本語(訓読)」に於いて、
①「他動詞の語順」は、「逆」であって、
②「自動詞の語順」は、「順」である。
従って、
(16)(17)により、
(18)
① 有書。
② 書在。
に於いて、
① の「語順」は、「日本語」と「逆」になり、
② の「語順」は、「日本語」と「順」になる。
然るに、
(19)
返読文字とは、先に述べた「ヲ・ニ・ト・ヨリ」がなくとも返り点を打つ文字のことである。
(高等学校古文/漢文の読み方/返読文字)
従って、
(17)(18)(19)により、
(20)
①「(漢文の)有」が、「他動詞」であって、
②「(漢文の)在」が、「自動詞」であるが故に、
① 有書。
② 書在。
に於いて、
①「有る」は、「返読文字」であって、
②「在る」は、「返読文字」ではない。
といふ、ことになる。
然るに、
(16)により、
(21)
① 机上有書(机上に、書有り)。
② 書在机上(書、机上に在り)。
であるため、
① 此有人(此に、人有り)。
② 人在此(人、此に在り)。
である。
従って、
(20)(21)により、
(22)
① 此有人(此に、人有り)。
② 人在此(人、此に在り)。
といふ「語順」に対して、
① 此在人(此に、人在り)。
② 人有此(人、此に有り)。
といふ「語順」は、無い。
然るに、
(23)
因みに、「加藤徹、白文攻略 漢文ひとり学び、2013年、95頁」によると、
① 此有人(此に、人有り)。
② 人在此(人、此に在り)。
は、それぞれ、
①「(誰か)人がここにいる。」
②「(さっきから話題にしている、あの)人がここにいる。」
といふ「意味」である、との、ことである。
然るに、
(24)
② 沛公在此(沛公、此に在り)。
に於いて、
② 此(ここに)
は、「補語」である。
cf.
② 沛公 is here.
従って、
(24)により、
(25)
③ 沛公在安(沛公、安くにか在る)。
に於いて、
③ 安(いづくに)
は、「補語」である。
(26)
前置による強調
動詞についての目的語は、その動詞の後に置かれるのが、漢語における基本構造としての単語の配列のしかたである。また、漢語における介詞は、ほとんど、動詞から発達したものであって、その目的語(補語)も、その介詞の後に置かれるのが、通則であるということができる。しかし、古代漢語においては、それらの目的語(補語)が疑問詞である場合には、いずれも、その動詞・介詞の前におかれている。このように、漢語としての通常の語順を変えて、目的語の疑問詞を前置することは、疑問文において、その疑問の中心になっている疑問詞を、特に強調したものにちがいない。
(鈴木直治、中国語と漢文、1975年、334・5頁改)
従って、
(25)(26)により、
(27)
③ 沛公在安(沛公、安くにか在る)。
ではなく、
③ 沛公安在(沛公、安くにか在る)。
でなければ、ならない。
cf.
③ Where is 沛公?
③ WH移動(生成文法)。
従って、
(22)(23)(27)により、
(28)
① 此有人(此に、人有り)。
② 人在此(人、此に在り)。
③ 人安在(人、安くにか在る)。
に於いて、
① Here is someone.
② The man is here.
③ Where is the man.
といふ、「意味」なる(はずである)。
令和02年08月13日、毛利太。
① 我有父母=
① 我有(父母)⇒
① 我(父母)有=
① 我に(父母)有り=
① I have parents.
(02)
② 人皆有兄弟=
② 人皆有(兄弟)⇒
② 人皆(兄弟)有=
② 人皆(兄弟)有り=
② Everybody has brothers.
従って、
(01)(02)により、
(03)
「有」とは、即ち、「Have(持つ)」である。
然るに、
(04)
【有】ユウ(イウ・ウ)、ある
〈解字〉会意。意符号「月」(肉)と音と意を表す「又(イウ・ウ)」(右手)。肉を己の所有とする意。
「有無」の「有」はその延長義。「有」は「もつ」が原義だから「・・・・・がある」にあたり「・・・・・である」ではない。(対)無。
(中沢希夫、同訓異字辞典、1980年、21頁)
従って、
(03)(04)により、
(05)
「有」の「原義」は、「持つ(Have)」である。
然るに、
(06)
③ 居上位而不驕=
③ 居(上位)而不(我驕)⇒
③ (上位)居而(驕)不=
③ (上位に)居て(驕ら)ず=
③ 上座に座ってゐても、驕らない。
然るに、
(07)
【在】サイ・ザイ、ある
〈字義〉ある・おる(在)。
(中沢希夫、同訓異字辞典、1980年、21頁)
(08)
【在】4881
(ロ)をる。云々にをる。
(大修館、大漢和辞典)
(09)
を・り【居る】[一](動詞)自ラ変
① 存在する。いる。ある。
② 座っている。
(旺文社、全訳古語辞典、2006年、935頁)
(10)
従って、
(06)~(10)により、
(11)
「在」の「原義」は、「座ってゐる(Sitting)」に近い。
従って、
(05)(11)により、
(12)
「有」の「原義」は、「持つ(他動詞)」であって、
「在」の「原義」は、「座ってゐる(自動詞)」に近い。
然るに、
(13)
存在と出現・消滅の表現法
存在を表す動詞として、古代においても、「有」と「在」とが常用されている。しかし、その存在するものと、存在する場所とをいふ単語の語順は、次のように、全く反対である。
A式 場所語―有―存在物
例 机上有レ書。(机上に書あり)
B式 存在物―在―場所語
例 書在ニ机上一。(書、机上にあり)
(鈴木直治、中国語と漢文、1975年、346頁)
従って、
(12)(13)により、
(14)
① 机上有書。
② 書在机上。
に於いても、
①「有」は「他動詞」の「語順」を取り、
②「在」は「自動詞」の「語順」を取る。
然るに、
(15)
主語や補語は省略されることが多い。
(片桐功雄、究める漢文、2010年、16頁改)
従って、
(14)(15)により、
(16)
① 机上有書。
② 書在机上。
といふ「漢文」は、
① 机上(主語)と、
② 机上(補語)が、「省略」されて、
① 有書。
② 書在。
となることが、多い。 然るに、
(17)
「漢文」と「日本語(訓読)」に於いて、
①「他動詞の語順」は、「逆」であって、
②「自動詞の語順」は、「順」である。
従って、
(16)(17)により、
(18)
① 有書。
② 書在。
に於いて、
① の「語順」は、「日本語」と「逆」になり、
② の「語順」は、「日本語」と「順」になる。
然るに、
(19)
返読文字とは、先に述べた「ヲ・ニ・ト・ヨリ」がなくとも返り点を打つ文字のことである。
(高等学校古文/漢文の読み方/返読文字)
従って、
(17)(18)(19)により、
(20)
①「(漢文の)有」が、「他動詞」であって、
②「(漢文の)在」が、「自動詞」であるが故に、
① 有書。
② 書在。
に於いて、
①「有る」は、「返読文字」であって、
②「在る」は、「返読文字」ではない。
といふ、ことになる。
然るに、
(16)により、
(21)
① 机上有書(机上に、書有り)。
② 書在机上(書、机上に在り)。
であるため、
① 此有人(此に、人有り)。
② 人在此(人、此に在り)。
である。
従って、
(20)(21)により、
(22)
① 此有人(此に、人有り)。
② 人在此(人、此に在り)。
といふ「語順」に対して、
① 此在人(此に、人在り)。
② 人有此(人、此に有り)。
といふ「語順」は、無い。
然るに、
(23)
因みに、「加藤徹、白文攻略 漢文ひとり学び、2013年、95頁」によると、
① 此有人(此に、人有り)。
② 人在此(人、此に在り)。
は、それぞれ、
①「(誰か)人がここにいる。」
②「(さっきから話題にしている、あの)人がここにいる。」
といふ「意味」である、との、ことである。
然るに、
(24)
② 沛公在此(沛公、此に在り)。
に於いて、
② 此(ここに)
は、「補語」である。
cf.
② 沛公 is here.
従って、
(24)により、
(25)
③ 沛公在安(沛公、安くにか在る)。
に於いて、
③ 安(いづくに)
は、「補語」である。
(26)
前置による強調
動詞についての目的語は、その動詞の後に置かれるのが、漢語における基本構造としての単語の配列のしかたである。また、漢語における介詞は、ほとんど、動詞から発達したものであって、その目的語(補語)も、その介詞の後に置かれるのが、通則であるということができる。しかし、古代漢語においては、それらの目的語(補語)が疑問詞である場合には、いずれも、その動詞・介詞の前におかれている。このように、漢語としての通常の語順を変えて、目的語の疑問詞を前置することは、疑問文において、その疑問の中心になっている疑問詞を、特に強調したものにちがいない。
(鈴木直治、中国語と漢文、1975年、334・5頁改)
従って、
(25)(26)により、
(27)
③ 沛公在安(沛公、安くにか在る)。
ではなく、
③ 沛公安在(沛公、安くにか在る)。
でなければ、ならない。
cf.
③ Where is 沛公?
③ WH移動(生成文法)。
従って、
(22)(23)(27)により、
(28)
① 此有人(此に、人有り)。
② 人在此(人、此に在り)。
③ 人安在(人、安くにか在る)。
に於いて、
① Here is someone.
② The man is here.
③ Where is the man.
といふ、「意味」なる(はずである)。
令和02年08月13日、毛利太。
登録:
投稿 (Atom)