2022年5月25日水曜日

6本の中の2本が当たりのクジを3本引く。

―「先程の記事」を補足します。―
(01)
[問題1]
6本の中の2本が当たりのクジを3本を引くときの「場合の数」を求めよ。
[問題2]
6本の中の2本が当たりのクジを3本を引き、少なくとも1本が当たりである「場合の数」を求めよ。
[問題3]
6本の中の2本が当たりのクジを3本を引き、2本が当たりである「場合の数」を求めよ。
[問題4]
6本の中の2本が当たりのクジを3本を引き、1本が当たりである「場合の数」を求めよ。
然るに、
(02)
,C,D,E,F}から選ぶ、{異なる3個の組合せ(6C3)}と、
,C,D,E,F}から選ぶ、{異なる3個の 順列 (6P3)}とは、次のやうになる。
― 6C3{(6×5×4)÷3!=20}―




CD
CE
CF
DE
DF
EF
CD
CE
CF
DE
DF
EF
⑰ CDE
⑱ CDF
⑲ CEF
⑳ DEF
―(6P3=6C3×3!=20×6=120)―
C  C  C C
D  D  D D
E  E  E E
F  F  F F
CD DC CD CD DC DC
CE EC CE CE EC EC
CF FC CF CF FC FC
DE ED DE DE ED ED
DF FD DF DF FD FD
EF FE EF EF FE FE
CD DC CD CD DC DC
CE EC CE CE EC EC
CF FC CF CF FC FC
DE ED DE DE ED ED
DF FD DF DF FD FD
EF FE EF EF FE FE
⑰ CDE CED DCE DEC ECD EDC
⑱ CDF CFD DCF DFC FCD FDC
⑲ CEF CFE ECF EFC FCE FEC
⑳ DEF DFE EDF EFD FDE FED
―(6P3=4×5×6=120)は「樹形図」の順。―
C    
D CD DC EC FC
E CE DC ED FD
F CF DF EF FF
C    
D CD DC EC FC
E CE DC ED FD
F CF DF EF FF
③ C C CD CE CF
③ CD CD CD CE CF
③ CE CE CD CED CFD
③ CF CF CDF CEF CFF
④ D D DC DE DF
④ DC DC DC DE DF
④ DE DE DC DEC DFC
④ DF DF DCF DEF DFF
⑤ E E EC ED EF
⑤ EC EC EC ED EF
⑤ ED ED EC EDC EFC
⑤ EF EF ECF EDF EFF
⑥ F F FC FD FE
⑥ FC FC FC FD FE
⑥ FD FD FC FDC FEC
⑥ FE FE FCE FDE FEE
然るに、
(03)
当たり={
ハズレ={C,D,E,F}
とする。
従って、
(02)(03)により、
(04)
[答へ1]
6本の中の2本が当たりのクジを3本を引くときの「場合の数」は、
6C3=(6×5×4)÷3!=120÷6=20
である。
然るに、
(02)(03)により、
(05)
3本引いて、
⑰ CDE
⑱ CDF
⑲ CEF
⑳ DEF
のやうに、
3本とも「ハズレ(C,D,E,F)」である「場合の数」は、
4C3=(4×3×2)÷3!=24÷6=4
である。
従って、
(04)(05)により、
(06)
[答へ2]
6本の中の2本が当たりのクジを3本を引くときに、
3本が、3本とも「ハズレ」であるわけではない「場合の数」、すなはち、




CD
CE
CF
DE
DF
EF
CD
CE
CF
DE
DF
EF
のやうに、
3本の内の、2本、あるいは1本が「当たり」である「場合の数」は、
20—4=16
である。
然るに、
(07)
2C2=(2×1)÷2!=2÷2=1
4C1=(4×1)÷1!=4÷1=4
従って、
(02)(03)(07)により、
(08)
[答へ3]
6本の中の2本が当たりのクジを3本を引き、




のやうに、
2本が「当たり(1本がハズレ)」である「場合の数」は、
1×4=4
である。
然るに、
(09)
2C1=(2×1)÷1!= 2÷1=2
4C2=(4×3)÷2!=12÷2=6
従って、
(02)(03)(09)により、
(10)
[答へ4]
6本の中の2本が当たりのクジを3本を引き、
CD
CE
CF
DE
DF
EF
CD
CE
CF
DE
DF
EF
のやうに、
1本が「当たり(2本がハズレ)」である「場合の数」は、
2×6=12
である。
従って、
(01)~(10)により、
(11)
[問題1]6本の中の2本が当たりのクジを3本を引くときの「場合の数」を求めよ。
[問題2]6本の中の2本が当たりのクジを3本を引き、少なくとも1本が当たりである「場合の数」を求めよ。
[問題3]6本の中の2本が当たりのクジを3本を引き、2本が当たりである「場合の数」を求めよ。
[問題4]6本の中の2本が当たりのクジを3本を引き、1本が当たりである「場合の数」を求めよ。
に対しては、
[答へ1]20通リ。
[答へ2]16通リ。
[答へ3] 4通リ。
[答へ4]12通リ。
といふ[答へ]が「正しい」。
然るに、
(11)により、
(12)
[答へ2]=[答へ3]+[答へ4]=(4+12=16)通リ。
であるため、確かに、「正しい」。
然るに、
(02)により、
(13)
[答へ1]20通リ。
[答へ2]16通リ。
[答へ3] 4通リ。
[答へ4]12通リ。
のそれぞれを、(3!=6)倍すると、
[答へ1]120通リ。
[答へ2] 96通リ。
[答へ3] 24通リ。
[答へ4] 72通リ。
従って、
(12)(13)により、
(14)
[答へ2]=[答へ3]+[答へ4]=   (4+12=16)通リ。
[答へ2]=[答へ3]+[答へ4]=3!×(4+12=16)通リ。
従って、
(11)~(14)により、
(15)
[問題2]6本の中の2本が当たりのクジを3本を引く際に、少なくとも1本が当たりである「確率」を求めよ。
[問題3]6本の中の2本が当たりのクジを3本を引く際に、2本が当たりである「確率」を求めよ。
[問題4]6本の中の2本が当たりのクジを3本を引く際に、1本が当たりである「確率」を求めよ。
といふ「確率の問題」自体は、『組合せ()』で考へても、『順列()』で考へても、「同じ」になる。
従って、
(15)により、
(16)
このやうな「確率の問題」の場合は、
順列と組み合わせで一番よくつまずくのが、問題を見た時に組み合わせなのか順列なのか、つまりで計算するのかで計算するのかが分からないという時です(家庭教師のあすなろ関西)。
といふことには、ならない。
(17)
Pで「計算」しても、
Cで「計算」しても、「同じ」であるものを、
Pで「計算」すべきか、
Cで「計算」すべきか、分からないことは、「当然」である。
令和04年05月25日、毛利太。

0 件のコメント:

コメントを投稿