2020年6月12日金曜日

「鼻は象が長い(ピーターラビットの鼻は長くない)。」の「述語論理」。

(01)
 ―「以前(令和2年4月4日)」にも書いた通り、―
(ⅰ)
1     (1)∀x∃y{(鼻xy&象y→長x)&(~象y&鼻xy→~長x)} A
1     (2)  ∃y{(鼻ay&象y→長a)&(~象y&鼻ay→~長a)} 1UE
 3    (3)     (鼻ab&象b→長a)&(~象b&鼻ab→~長a)  A
 3    (4)      鼻ab&象b→長a                 3&E
 3    (5)                  ~象b&鼻ab→~長a   3&E
  6   (6)                           長a   A
  6   (7)                         ~~長a   6DN
 36   (8)                ~(~象b&鼻ab)      57MTT
 36   (9)                  象b∨~鼻ab       8ド・モルガンの法則
   ア  (ア)                  象b            A
   ア  (イ)                ~~象a            アDN
   ア  (ウ)                ~~象a∨~鼻ab       イ∨I
    エ (エ)                     ~鼻ab       A
    エ (オ)                ~~象b∨~鼻ab       エ∨I
 36   (カ)                ~~象b∨~鼻ab       9アウエオ∨E
 36   (キ)                 ~象b→~鼻ab       カ含意の定義
 3    (ク)             長a→(~象b→~鼻ab)      6キCP
     ケ(ケ)             長a& ~象b            A
     ケ(コ)             長a                 ケ&E
 3   ケ(サ)                 ~象b→~鼻ab       クコMPP
     ケ(シ)                 ~象b            ケ&E
 3   ケ(ス)                     ~鼻ab       サシMPP
 3    (セ)              長a&~象b→~鼻ab       ケスCP
 3    (ソ)     (鼻ab&象b→長a)&(長a&~象b→~鼻ab)  4セ&I
 3    (タ)  ∃y{(鼻ay&象y→長a)&(長a&~象y→~鼻ay)} ソEI
1     (チ)  ∃y{(鼻ay&象b→長a)&(長a&~象y→~鼻ay)} 23タEE
1     (ツ)∀x∃y{(鼻xy&象y→長x)&(長x&~象y→~鼻xy)} チUI
(ⅱ)
1     (1)∀x∃y{(鼻xy&象y→長x)&(長x&~象y→~鼻xy)} A
1     (2)  ∃y{(鼻ay&象b→長a)&(長a&~象y→~鼻ay)} 1UE
 3    (3)     (鼻ab&象b→長a)&(長a&~象b→~鼻ab)  A
 3    (4)      鼻ab&象b→長a                 3&E
 3    (5)                  長a&~象b→~鼻ab   3&E
  6   (6)                          鼻ab   A
  6   (7)                        ~~鼻ab   6DN
 36   (8)                ~(長a&~象b)       57MTT
 36   (9)                 ~長a∨ 象b        8ド・モルガンの法則
 36   (ア)                  象a∨~長a        9交換法則
   イ  (イ)                  象a            A
   イ  (ウ)                ~~象a            イDN
   イ  (エ)                ~~象a∨~長a        ウ∨I
    オ (オ)                     ~長a        A
    オ (カ)                ~~象a∨~長a        オ∨I
 36   (キ)                ~~象a∨~長a        アイエオカ∨E
 36   (ク)                 ~象a→~長a        キ含意の定義
 3    (ケ)               鼻ab→(~象a→~長a)    6クCP
     コ(コ)              ~象b&鼻ab           A
     コ(サ)                  鼻ab           コ&E
 3   コ(シ)                    ~象a→~長a     ケサMPP
     コ(ス)              ~象b               コ&E
 3   コ(セ)                        ~長a     シスMPP
 3    (ソ)                  ~象b&鼻ab→~長a   コセCP
 3    (タ)     (鼻ab&象b→長a)&(~象b&鼻ab→~長a)  4ソ&I
 3    (チ)  ∃y{(鼻ay&象y→長a)&(~象y&鼻ay→~長a)} タEI
1     (ツ)  ∃y{(鼻ay&象y→長a)&(~象y&鼻ay→~長a)} 23チEE
1     (テ)∀x∃y{(鼻xy&象y→長x)&(~象y&鼻xy→~長x)} ツUI
従って、
(01)により、
(02)
① ∀x∃y{(鼻xy&象y→長x)&(~象y&鼻xy→~長x)}
② ∀x∃y{(鼻xy&象y→長x)&(長x&~象y→~鼻xy)}
に於いて、すなはち、
① すべてのxとあるyについて、xがyの鼻であって、yが象ならば、xは長く、yが象ではなく、xがyの鼻ならば、xは長くない。
② すべてのxとあるyについて、xがyの鼻であって、yが象ならば、xは長く、xが長くて、yが象でないならば、xはyの鼻ではない。
に於いて、
①=② である。
然るに、
(02)により、
(03)
① ∀x∃y{(鼻xy&象y→長x)&(~象y&鼻xy→~長x)}⇔
① すべてのxとあるyについて、xがyの鼻であって、yが象ならば、xは長く、yが象ではなく、xがyの鼻ならば、xは長くない。
といふことは、
① 鼻は象は長く、象以外の鼻は長くない。
といふ「意味」である。
(04)
② ∀x∃y{(鼻xy&象y→長x)&(長x&~象y→~鼻xy)}⇔
② すべてのxとあるyについて、xがyの鼻であって、yが象ならば、xは長く、xが長くて、yが象でないならば、xはyの鼻ではない。
といふことは、
② 鼻は象は長く、象以外の動物(例へば兎)で、ある部分が長いならば、鼻以外の、耳が長い。
② 鼻は象は長く、象以外の動物(例へば馬)で、ある部分が長いならば、鼻以外の、顔が長い。
といふ「意味」である。
然るに、
(05)
{象、兎、馬}を、{変域(ドメイン)}とすると、
① 鼻は象が長く、
② 耳は兎が長く、
③ 顔は馬が長い。
といふ「日本語」は、「正しい」。
従って、
(01)~(05)により、
(06)
① 鼻は、象長い。
② 鼻は、象は長く、象以外は長くない
③ ∀x∃y{(鼻xy&象y→長x)&(~象y&鼻xy→~長x)}。
④ すべてのxとあるyについて、xがyの鼻であって、yが象ならば、xは長く、yが象ではなく、xがyの鼻ならば、xは長くない。
に於いて、
①=②=③=④ である。
然るに、
(07)
1    (1)∀x∃y{(鼻xy&象y→長x)&(~象y&鼻xy→~長x)} A
1    (2)  ∃y{(鼻ay&象y→長a)&(~象y&鼻ay→~長a)} 1UE
 3   (3)     (鼻ab&象b→長a)&(~象b&鼻ab→~長a)  A
 3   (4)      鼻ab&象b→長a                 3&E
 3   (5)                  ~象b&鼻ab→~長a   3&E
  6  (6)∃x∃y(Py&兎y&鼻xy&~象y)             A
   7 (7)  ∃y(Py&兎y&鼻ab&~象y)             A
    8(8)     Pb&兎b&鼻ab&~象b              A
    8(9)     Pb&兎b                      8&E
    8(ア)               ~象b              8&E
    8(イ)           鼻ab                  8&E
    8(ウ)                  ~象b&鼻ab       アイ&I
 3  8(エ)                          ~長a   5ウMPP
    8(オ)         Pb&兎b&鼻ab              9イ&I
 3  8(カ)         Pb&兎b&鼻ab&~長a          オエ&I
 3  8(キ)      ∃y(Py&兎y&鼻ay&~長a)         カEI
 3 7 (ク)      ∃y(Py&兎y&鼻ay&~長a)         78キEE
 3 7 (ケ)    ∃x∃y(Py&兎y&鼻xy&~長x)         クEI
 36  (コ)    ∃x∃y(Py&兎y&鼻xy&~長x)         67ケEE
1 6  (サ)    ∃x∃y(Py&兎y&鼻xy&~長x)         13コEE
従って、
(07)により、
(08)
∀x∃y{(鼻xy&象y→長x)&(~象y&鼻xy→~長x)},∃x∃y(Py&兎y&鼻xy&~象y)├ ∃x∃y(Py&兎y&鼻xy&~長x) 
といふ「連式(Sequent)」は「妥当(Valid)」である。
従って、
(08)により、
(09)
① すべてのxとあるyについて{xがyの鼻であって、yが象ならば、xは長く、yが象ではなく、xがyの鼻ならば、xは長くない}。然るに、
②   あるxとあるyについて{yはピーター兎であって、xはyの鼻であって、yは象でない}。故に、
③     あるxとあるyについて{yはピータ―兎であって、xはyの鼻であって、xは長くない}。
といふ「推論(三段論法)」は「妥当(Valid)」である。
従って、
(09)により、
(10)
① 鼻は象長い。然るに、
② ピーター兎の鼻は、象の鼻ではない。故に、
③ ピーター兎の鼻は、長くない
といふ「推論(三段論法)」は「妥当(Valid)」である。
従って、
(01)~(10)により、
(11)
① 鼻は象が長い。然るに、
② ピーター兎の鼻は、象の鼻ではない。故に、
③ ピーター兎の鼻は、長くない。
といふ「推論(三段論法)」は「妥当(Valid)」であると、するのであれば、
① 鼻は象が長い。⇔
① 鼻は象が長く、象以外は長くない。⇔
① ∀x∃y{(鼻xy&象y→長x)&(~象y&鼻xy→~長x)}⇔
① すべてのxとあるyについて、xがyの鼻であって、yが象ならば、xは長く、yが象ではなく、xがyの鼻ならば、xは長くない。
といふ「等式」を、「否定」することは、出来ない。
然るに、
(12)
① 鼻は象が長い。然るに、
② ピーター兎の鼻は、象の鼻ではない。故に、
③ ピーター兎の鼻は、長くない。
といふ「推論(三段論法)」は、明らかに、「妥当(Valid)」である。
従って、
(11)(12)により、
(13)
① 鼻は象が長い。⇔
① 鼻は象が長く、象以外は長くない。⇔
① ∀x∃y{(鼻xy&象y→長x)&(~象y&鼻xy→~長x)}⇔
① すべてのxとあるyについて、xがyの鼻であって、yが象ならば、xは長く、yが象ではなく、xがyの鼻ならば、xは長くない。
といふ「等式」を、「否定」することは、出来ない。
従って、
(13)により、
(14)
{象、兎、馬}を、{変域(ドメイン)}とするならば、
① 鼻は象長い。⇔ 鼻は象が長く、象以外(兎と馬)は長くない
② 耳は兎長い。⇔ 耳は兎が長く、兎以外(象と馬)は長くない
③ 顔は馬長い。⇔ 顔は馬が長く、馬以外(象と兎)は長くない
といふ「等式」が、成立する。
令和02年06月12日、毛利太。

0 件のコメント:

コメントを投稿