2019年11月27日水曜日

ある種の「矛盾」について。

― しばらく、「返り点」に関する「記事」を書いてゐません。「返り点と括弧」に関しては、
(α)「返り点」と「括弧」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_11.html
(β)「返り点」と「括弧」の条件。  :(https://kannbunn.blogspot.com/2017/12/blog-post_15.html
(γ)「返り点」と「括弧」の条件(Ⅱ):(https://kannbunn.blogspot.com/2017/12/blog-post_16.html
(δ)「返り点」は、下には戻らない。 :(https://kannbunn.blogspot.com/2017/12/blog-post_20.html
(ε)「下中上点」等が必要な「理由」。:(https://kannbunn.blogspot.com/2017/12/blog-post_22.html
(ζ)「返り点・モドキ」について。  :(https://kannbunn.blogspot.com/2017/12/blog-post_24.html)⇒
 Web上には存在しますが、何故か、アクセス出来ません。
(η)「一二点・上下点」に付いて。  :(https://kannbunn.blogspot.com/2017/12/blog-post_26.html
(θ)「括弧」の「順番」。      :(https://kannbunn.blogspot.com/2018/01/blog-post.html
(ι)「返り点」と「括弧」の関係   :(https://kannbunn.blogspot.com/2019/01/blog-post_21.html
等々、「その他」を、お読み下さい。―

(01)
Aさん曰く「ある人はすべての人を愛してゐる。」
Bさん曰く「すべての人はある人を愛してゐる。」
Cさん曰く「AさんとBさんは矛盾してゐる。」
(02)
この場合、
Cさん曰く「AさんとBさんは矛盾してゐる。」
といふ「発言」は「正しい」のだろう
(03)
{変域(ドメイン)}を{人間}とすると、
① ある人はすべての人を愛してゐる。
② すべての人はある人を愛してゐる。
といふ「命題」は、
① ∃y∀x(愛yx)
② ∀y∃x(愛yx)
といふ風に、書くことが出来る。
然るに、
(04)
(ⅰ)
1 (1)∃y∀x(愛yx) A
 )  ∀x(愛x) A
 2(3)     愛ba  3UE
 )  ∃x(愛x) 3EI
 2(5)∀y∃x(愛x) 4UI
1 (6)∀y∃x(愛yx) 125EE
(ⅱ)
1 (1)∀y∃x(愛yx) A
1 (2)  ∃x(愛bx) 1UE
 )     愛b  A
 3(4)  ∀x(愛b) 3UI
 3(5)∃y∀x(愛yx) 4EI
1 (6)∃y∀x(愛yx) 135EE
然るに、
(05)
(04)により、
(ⅰ)は「UI(普遍量記号導入の規則)」に「違反」してゐて、
(ⅱ)も「UI(普遍量記号導入の規則)」に「違反」してゐる。
従って、
(03)(04)により、
(05)
「述語計算(Predicate calculation)」の「結果」からすると、
① ある人はすべての人を愛してゐる。
② すべての人はある人を愛してゐる。
に於いて、
① が「真(本当)」であるからと言って、② が「真(本当)」であるとは限らないし、
② が「真(本当)」であるからと言って、① が「真(本当)」であるとは限らない
といふ、ことになる。
然るに、
(06)
① ∃y∀x(愛yx)の「否定」。
② ∀y∃x(愛yx)の「否定」。
は、「量化子の関係」により、それぞれ、
③ ~∃y∀x(愛yx)≡∀y~∀x(愛yx)≡∀y∃x~(愛yx)≡すべての人はある人を愛してゐない(誰からも愛されない人がゐる)。
④ ~∀y∃x(愛yx)≡∃y~∃x(愛yx)≡∃y∀x~(愛yx)≡ある人はすべての人を愛してゐない(誰をも、愛さない人がゐる)。
である。
従って、
(05)(06)により、
(07)
①「ある人がすべての人を愛してゐる」からと言って「すべての人はある人を愛してゐる」とは限らない
②「すべての人がある人を愛してゐる」からと言って「ある人がすべての人を愛してゐる」とは限らない
といふことは、「矛盾」ではなく
①「ある人がすべての人を愛してゐる」ならば「すべての人はある人を愛してゐない」。
②「すべての人がある人を愛してゐる」ならば「ある人はすべての人を愛してゐない」。
といふことが、「矛盾」である。
然るに、
(08)
①「すべての人はある人を愛してゐる」とは限らないのであれば、「すべての人はある人を愛してゐない」のかも知れないし、
②「ある人がすべての人を愛してゐる」とは限らないのであれば、「ある人はすべての人を愛してゐない」のかも知れない
従って、
(01)~(07)により、
(08)
この場合、
Cさん曰く「AさんとBさんは矛盾してゐる。」
といふ「発言」は「正しく」はない
令和元年11月27日、毛利太。

0 件のコメント:

コメントを投稿