(01)
① 1個以上のxがFであって、尚且つ、
② 1個以下のxがFである。
といふことは、
③ 正確に1個のxがFである。
といふことである。
然るに、
(02)
① 1個以上のxがFである。
といふことを、記号で書くと、
① ∃x(Fx)
である。
然るに、
(03)
② 1個以下のxがFである。
③ 2個以上のxがFである。
に於いて、
② と ③ は、「矛盾」する。
従って、
(04)
② 1個以下のxがFである。
③ 2個以上のxがFである。といふことはない。
に於いて、
②=③ である。
然るに、
(05)
③ 2個以上のxがFである。といふことはない。
といふことを、記号で書くと、
③ ~∃x∃y{(Fx&Fy)&x≠y}
である。
然るに、
(06)
(ⅲ)
1(1)~∃x∃y{(Fx&Fy)&x≠y} A
1(2)∀x~∃y{(Fx&Fy)&x≠y} 1量化子の関係
1(3)∀x∀y~{(Fx&Fy)&x≠y} 2量化子の関係
1(4) ∀y~{(Fa&Fy)&a≠y} 3UE
1(5) ~{(Fa&Fb)&a≠b} 4UE
1(6) ~(Fa&Fb)∨a=b 5ド・モルガンの法則
1(7) (Fa&Fb)→a=b 6含意の定義
1(8) ∀y{(Fa&Fy)→a=y} 7UI
1(9) ∀x∀y{(Fx&Fy)→x=y} 8UI
(ⅳ)
1(1) ∀x∀y{(Fx&Fy)→x=y} A
1(2) ∀y{(Fa&Fy)→a=y} 1UE
1(3) Fa&Fb →a=b 2UE
1(4) ~(Fa&Fb)∨a=b 3含意の定義
1(5) ~{(Fa&Fb)&a≠b} 4ド・モルガンの法則
1(6) ∀y~{(Fa&Fy)&a≠y} 5UI
1(7) ~∃y{(Fa&Fy)&a≠y} 6量化子の関係
1(8)∀x~∃y{(Fx&Fy)&x≠y} 7UI
1(9)~∃x∃y{(Fx&Fy)&x≠y} 8量化子の関係
従って、
(06)により、
(07)
③ ~∃x∃y{(Fx&Fy)&x≠y}
④ ∀x∀y{(Fx&Fy)→x=y}
に於いて、
③=④ である。
従って、
(05)(06)(07)により、
(08)
③ 2個以上のxがFである。といふことはない。
といふことを、記号で書くと、
③ ∀x∀y{(Fx&Fy)→x=y}
である。
従って、
(01)(02)(08)により、
(09)
「番号」を付け直すと、
① ∃x(Fx)であって、尚且つ、
② ∀x∀y{(Fx&Fy)→x=y}であるならば、そのときに限って、
③ 正確に1個のxがFである。
従って、
(09)により、
(10)
「番号」を付け直すと、
① 正確に1個のxがFである。
② ∃x(Fx)&∀x∀y{(Fx&Fy)→x=y}
に於いて、
①=② である。
然るに、
(11)
(ⅰ)
1 (1)∃xFx&∀x∀y(Fx&Fy→x=y) A
1 (2)∃xFx 1&E
3 (3) Fa A
1 (4) ∀x∀y(Fx&Fy→x=y) 1&E
1 (5) ∀y(Fa&Fy→a=y) 4UE
1 (6) Fa&Fb→a=b 5UE
7(7) Fb A
37(8) Fa&Fb 37&I
137(9) a=b 68MPP
13 (ア) Fb→a=b 79CP
13 (イ) ∀y(Fy→a=y) アUI
13 (ウ) Fa&∀y(Fy→a=y) 3イ&I
13 (エ) ∃x{Fx&∀y(Fy→x=y)} ウEI
1 (オ) ∃x{Fx&∀y(Fy→x=y)} 13エEE
(ⅱ)
1 (1) ∃x{Fx&∀y(Fy→x=y)} A
2 (2) Fa&∀y(Fy→a=y) A
2 (3) Fa 2&E
2 (4) ∀y(Fy→a=y) 2&E
2 (5) Fb→a=b 4UE
6(6) Fb&Fb A
6(7) Fb 6&E
26(8) a=b 57MPP
26(9) a=b&a=b 88&I
26(ア) a=b 9&E
26(イ) b=b 8ア=E
2 (ウ) Fb&Fb→b=b 5イCP
2 (エ) ∀y(Fb&Fy→b=y) ウUI
2 (オ) ∀x∀y(Fx&Fy→x=y) エUI
2 (カ) ∃xFx 3EI
2 (キ)∃xFx&∀x∀y(Fx&Fy→x=y) オカ&I
1 (ク)∃xFx&∀x∀y(Fx&Fy→x=y) 12クEE
従って、
(11)により、
(12)
① ∃x(Fx)&∀x∀y{(Fx&Fy)→x=y}
② ∃x{Fx&∀y(Fy→x=y)}
に於いて、
①=② である。
従って、
(10)(11)(12)により、
(13)
① 正確に1個のxがFである。
② ∃x{Fx&∀y(Fy→x=y)}
に於いて、
①=② である。
然るに、
(14)
② ∃x{Fx&∀y(Fy→x=y)}
といふ「論理式」を使って、
③ ∀x{Fx→∃y[Gy&Hyx&∀z(Hzx→y=z)]}
といふ「論理式」を書くことが出来る。
従って、
(14)により、
(15)
「番号」を付け直すと、
① ∀x{Fx→∃y[Gy&Hyx&∀z(Hzx→y=z)]}
といふ「論理式」、すなはち、
① すべてのxについて、xがFであるならば、あるyは、Gであって、その上、xのHであって、すべてのzについて、zがxのHであるならば、yとzは「同一」である。
といふ「論理式」を書くことが出来る。
従って、
(15)により、
(16)
① ∀x{Fx→∃y[Gy&Hyx&∀z(Hzx→y=z)]}
に於いて、
F=T会の会員
G=私
H=理事長
といふ「代入(Substitution)」を行ふと、
① ∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事長zx→y=z)]}
といふ「論理式」、すなはち、
① すべてのxについて、xがT会の会員であるならば、あるyは、私であって、その上、xの理事長であって、すべてのzについて、zがxの理事長であるならば、yとzは「同一」である。
といふ「論理式」を書くことが出来る。
然るに、
(17)
(ⅰ)
1 (1)∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事長zx→y=z)]} A
1 (2) T会の会員a→∃y[私y&理事長ya&∀z(理事長za→y=z)] 1UE
3 (3) T会の会員a A
13 (4) ∃y[私y&理事長ya&∀z(理事長za→y=z)] 34MPP
5 (5) 私b&理事長ba&∀z(理事長za→b=z) A
5 (6) 私b&理事長ba 5&E
5 (7) ∀z(理事長za→b=z) 5&E
5 (8) 理事長ca→b=c 7UE
9 (9) ∃z(小倉z&~私z) A
ア (ア) 小倉c&~私c A
ア (イ) 小倉c ア&E
ア (ウ) ~私c ア&E
エ(エ) b=c A
アエ(オ) ~私b ウエ=E
5 (カ) 私b 6&E
5 アエ(キ) ~私b&私b オカ&I
5 ア (ク) b≠c エキRAA
5 ア (ケ) ~理事長ca 8クMTT
5 ア (コ) 小倉c&~理事長ca イケ&I
5 ア (サ) ∃z(小倉z&~理事長za) コEI
59 (シ) ∃z(小倉z&~理事長za) 9アサEE
13 9 (ス) ∃z(小倉z&~理事長za) 45シEE
1 9 (セ) T会の会員a→∃z(小倉z&~理事長za) 3ス&I
1 9 (シ)∀x{T会の会員x→∃z(小倉z&~理事長zx)} セUI
1 9 (〃)タゴール記念会は、小倉氏は、理事長ではない。 セUI
従って、
(17)により、
(18)
(1)∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事長zx→y=z)]}。然るに、
(9)∃z(小倉z&~私z)。従って、
(シ)∀x{T会の会員x→∃z(小倉z&~理事長zx)}。
といふ「推論」、すなはち、
(1)すべてのxについて、xがT会の会員であるならば、あるyは、私であって、その上、xの理事長であって、すべてのzについて、zがxの理事長であるならば、yとzは「同一」である。然るに、
(9)あるzは小倉氏であって、zは私ではない。従って、
(シ)すべてのxについて、xがT会の会員であるならば、あるzは小倉氏であって、zはxの理事長ではない。
といふ「推論」は、「妥当」である。
然るに、
(19)
いづれにせよ、
(1)タゴール記念会は、私が理事長です。 然るに、
(9)小倉氏は、私ではない。従って、
(シ)タゴール記念会は、小倉氏は、理事長ではない。
といふ「推論」は、明らかに、「妥当」である。
然るに、
(20)
(1)タゴール記念会は、私の他にも、理事はゐる。 然るに、
(9)小倉氏は、私ではない。従って、
(シ)タゴール記念会は、小倉氏は、理事ではない。
といふ「推論」は、もちろん、「妥当」ではない。
然るに、
(21)
(ⅰ)
1(1)∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事長zx→y=z)]} A
ではなく、
1(1)∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事zx→y=z)]} A
から、
1(1) ∀z(理長zx→y=z)
を取り出して、「否定」すると、
(ⅱ)
1 (1)~∀z(理事zx→y=z) A
1 (2)∃z~(理事zx→y=z) 1量化子の関係
3 (3) ~(理事cx→y=c) A
4(4) ~理事cx∨y=c A
4(5) 理事cx→y=c 4含意の定義
34(6) ~(理事cx→y=c)&
(理事cx→y=c) 35&I
3 (7) ~(~理事cx∨y=c) 46RAA
3 (8) 理事cx&y≠c 7ド・モルガンの法則
3 (9) ∃z(理事zx&y≠z) 8EI
1 (ア) ∃z(理事zx&y≠z) 139EE
(ⅲ)
1 (1) ∃z(理事zx&y≠z) A
2 (2) 理事cx&y≠c A
3(3) 理事cx→y=c A
2 (4) 理事cx 2&E
23(5) y=c 34MPP
3(6) y≠c 2&E
23(7) y=c&y≠c 56&I
2 (8) ~(理事cx→y=c) 37RAA
2 (9)∃z~(理事zx→y=z) 8EI
1 (ア)∃z~(理事zx→y=z) 129EE
1 (イ)~∀z(理事zx→y=z)
従って、
(21)により、
(22)
② ~∀z(理事zx→y=z)
③ ∃z(理事zx&y≠z)
に於いて、
②=③ である。
従って、
(21)(22)により、
(23)
② ∀x{T会の会員x→∃y[私y&理事長yx&~∀z(理事zx→y=z)]}
③ ∀x{T会の会員x→∃y[私y&理事長yx& ∃z(理事zx&y≠z)]}
に於いて、すなはち、
② すべてのxについて、xがT会の会員であるならば、あるyは、私であって、その上、xの理事であって、すべてのzについて、zがxの理事であるならば、yとzは「同一」である。といふわけではない。
③ すべてのxについて、xがT会の会員であるならば、あるyは、私であって、その上、xの理事であって、あるzも、xの理事であって、yとzは「同一」ではない。
に於いて、
②=③ である。
然るに、
(24)
(ⅰ)
1 (1)∀x{T会の会員x→∃y[私y&理事yx&∃z(理事zx&y≠z)]} A
1 (2) T会の会員a→∃y[私y&理事ya&∃z(理事za&y≠z)] 1UE
3 (3) T会の会員a A
13 (4) ∃y[私y&理事ya&∃z(理事za&y≠z)] 34MPP
5 (5) 私b&理事ba&∃z(理事za&b≠z) A
5 (6) 私b&理事ba 5&E
5 (7) ∃z(理事za&b≠z) 5&E
8 (8) 理事ca&b≠c A
9 (9) ∃z(小倉z&~私z) A
ア (ア) 小倉c&~私c A
ア (イ) 小倉c ア&E
ア (ウ) ~私c ア&E
エ(エ) b=c A
アエ(オ) ~私b ウエ=E
5 (カ) 私b 6&E
5 アエ(キ) ~私b&私b オカ&I
5 ア (ク) b≠c エキRAA
5 ア (ケ) ~理事ca 8クMTT
に於いて、「最後の行」である、
5 ア (ケ) ~理事ca 8クMTT
は、「デタラメ」である。
従って、
(20)~(24)により、
(25)
(1)タゴール記念会は、私の他にも、理事はゐる。 然るに、
(9)小倉氏は、私ではない。従って、
(シ)タゴール記念会は、小倉氏は、理事ではない。
といふ「推論」は、もちろん、「妥当」ではなく、尚且つ、
(1)∀x{T会の会員x→∃y[私y&理事yx&∃z(理事zx&y≠z)]}。然るに、
(9)∃z(小倉z&~私z)。従って、
(シ)∀x{T会の会員x→∃z(小倉z&~理事長zx)}。
といふ「推論」、すなはち、
(1)すべてのxについて、xがT会の会員であるならば、あるyは、私であって、その上、xの理事であって、あるzも、xの理事であって、yとzは「同一」ではない。然るに、
(9)あるzは小倉氏であって、zは私ではない。従って、
(シ)すべてのxについて、xがT会の会員であるならば、あるzは小倉氏であって、zはxの理事長ではない。
といふ「推論」も、「妥当」ではない。
従って、
(18)~(25)により、
(26)
(1)タゴール記念会は、私が理事長です。 然るに、
(9)小倉氏は、私ではない。従って、
(シ)タゴール記念会は、小倉氏は、理事長ではない。
といふ「推論」は、
(1)∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事長zx→y=z)]}。然るに、
(9)∃z(小倉z&~私z)。従って、
(シ)∀x{T会の会員x→∃z(小倉z&~理事長zx)}。
といふ「推論」に、他ならない。
然るに、
(27)
よく知られているように、「私が理事長です」は語順を変え、
理事長は、私です。
と直して初めて主辞賓辞が適用されのである。また、かりに大倉氏が、
タゴール記念会は、私が理事です。
と言ったとすれば、これは主辞「タゴール記念会」を品評するという心持ちの文である。
(三上章、日本語の論理、1963年、40・41頁)
然るに、
(28)
② 理事長は、私です。
③ 私以外は理事長ではない。
に於いて、
②=③ は、対偶(Contraposition)」である。
然るに、
(29)
② 理事長は、私です。
③ 私以外は理事長ではない。
といふことは、
④ 私と理事長は、同一人物である。
といふ、ことである。
従って、
(27)(28)(29)により、
(30)
① 私が理事長です。
② 理事長は、私です。
③ 私以外は理事長ではない。
④ 私と理事長は、同一人物である。
に於いて、
①=②=③=④ である。
然るに、
(31)
(1)「タゴール記念会は、私と、その理事長が、同一人物である。」が、
(9)「小倉氏は、私ではない。」とするならば、そのときに限って、
(シ)「タゴール記念会は、小倉氏は、理事長ではない。」
従って、
(26)(30)(31)により、
(32)
① タゴール記念会は、私が理事長です。⇔
① タゴール記念会は、理事長は私です。⇔
① タゴール記念会は、私以外は理事長ではない。⇔
① タゴール記念会は、私と理事長は同一である。⇔
① ∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事長zx→y=z)]}⇔
① すべてのxについて、xがタゴール記念会の会員であるならば、あるyは、私であって、その上、xの理事長であって、すべてのzについて、zがxの理事長であるならば、yとzは「同一」である。
といふ「等式」が、成立する。
然るに、
(33)
また、かりに大倉氏が、
タゴール記念会は、私が理事です。
と言ったとすれば、これは主辞「タゴール記念会」を品評するという心持ちの文である。
と書いたとしても、
① タゴール記念会は、私が理事長です。
といふ「日本語」の、
① ∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事長zx→y=z)]}。
といふ「論理的な構造」を、明らかにした。
といふことには、ならない。
従って、
(32)(33)により、
(34)
伝統的論理学を清水滉『論理学』(1916年)で代表させよう。わたしのもっているのが四十三年の第十九冊の一冊で、なお引き続き刊行だろうから、前後かなり多くの読者をもつ論理学書と考えられる。新興の記号論理学は、沢田允茂『現代論理学入門』(1962年)を参照することにする(三上章、日本語の論理、1963年、4頁)。
とは言ふものの、三上先生は、例へば、
① タゴール記念会は、私が理事長です。
といふ「日本語」には、
① ∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事長zx→y=z)]}。
といふ「論理的な構造」が有る。
といふことを、知らないまま、「三上章、日本語の論理、1963年」を、上梓したことになる。
然るに、
(35)
更に言へば、
② 象は鼻が長い。
といふ「日本語」には、
② ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
といふ「論理的な構造」が有る。
といふことを、知らないまま、「三上章、象は鼻が長い、1960年」を、上梓したことになる。
然るに、
(36)
② 象は鼻が長い ≡∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
① タゴール記念会は、私が理事長です≡∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事長zx→y=z)]}。
といふ「等式」の、「右辺」を「無視」したまま、「左辺」を論じることは、「正しい」とは、言へないはずである。
従って、
(37)
私としては、「三上章、日本語の論理、1963年」に於ける、そうした点が、不満である。
然るに、
(32)により、
(38)
③ 私はこれがいいです。⇔
③ 私はこれは良く、これ以外は良くない。
③ ∀x{私x→∃y(これy&良いyx)&∀z(良いzx→z=y)}。
といふ「等式」が成立する。
然るに、
(39)
商品をいろいろ見せてもらって選択するときに、ハとガで意味が反対になることがある。
これはいいです。(不用)
これがいいです。(入用)
ここで異を立てる方にはハを使っているが、述語が同型異議になっている。不用の方はテモイイ、デモイイ(許可)で、入用の方はほめことば(好適)である。つまり、初めの方は「これはもらわ(有償)なくてもいいです」「これは引っ込めてもらっていいです」などの短絡的表現だろう(三上章、日本語の論理、1963年、156・7頁)。
然るに、
(40)
③ 商品をいろいろ見せてもらって選択するときに、
③ 私はこれは良く、これ以外は良くない。
といふのであれば、
③ 私は、これを買います。
と言ってゐるのと、「同じ」である。
従って、
(38)(39)(40)により、
(41)
③ 私はこれがいいです。⇔
③ 私はこれは良く、これ以外は良くない。⇔
③ 私は、これを買います。
といふことなのであって、
④ つまり、初めの方は「これはもらわ(有償)なくてもいいです」「これは引っ込めてもらっていいです」などの短絡的表現だろう。
といふ「言ひ方」は、「説明」には、なってゐない。
加へて、
(27)により、
(42)
また、かりに大倉氏が、
タゴール記念会は、私が理事です。
と言ったとすれば、これは主辞「タゴール記念会」を品評するという心持ちの文である。
といふ「言ひ方」も、「説明」には、なってゐない。
然るに、
(43)
新興の記号論理学は、沢田允茂『現代論理学入門』(1962年)を参照することにする(三上章、日本語の論理、1963年、4頁)。
とは言ふものの、「三上章、日本語の論理、1963年」、並びに、「三上章、象は鼻が長い、1960年」他を、読む限り、三上章先生自身が、「記号論理学」を学んでゐた、「形跡」は無い。
(44)
論理学とは何であるかを知る最善の方法は、実際に幾らくやってみることである(E.J.レモン 著、武生治一郎・浅野楢英 訳、論理学初歩、1973年、3頁)。
といふのは、「論理学とは何であるかを知る最善の方法」は「練習問題を、自分で解いてみる」ことである。
といふ風に、考へたい。
然るに、
(45)
『沢田允茂、現代論理学入門(1962年)』は「現代論理学」の「教科書」ではなく、「解説書」であるため、「練習問題」は、一切、載ってゐない。
従って、
(44)(45)により、
(46)
沢田允茂『現代論理学入門』(1962年)を参照しただけでは、「現代論理学とは何であるかを知る」ことは、ほとんど、出来ない。
従って、
(45)(46)により。
(47)
三上章先生は、1963年に、「論理学」を学ばないまま、「日本語の論理」といふタイトルの書籍を、上梓したことになる。
(48)
① 象は鼻が長い ≡∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
② 私はこれがいいです ≡∀x{私x→∃y(これy&良いyx)&∀z(良いzx→z=y)}。
③ タゴール記念会は、私が理事です≡∀x{T会の会員x→∃y[私y&理事長yx&∀z(理事長zx→y=z)]}。
といふ「等式」が成り立つことを、出来るだけ、多く方に、知ってもらいたい。
令和02年02月13日、毛利太。
0 件のコメント:
コメントを投稿