(01)
(ⅰ)
1 (1) ~P∨ Q A
2 (2) P&~Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6)~(P&~Q) 25RAA
7 (7) Q A
2 (8) ~Q 2&E
2 7 (9) Q&~Q 67&I
7 (ア)~(P&~Q) 29RAA
1 (イ)~(P&~Q) 1367ア∨E
ウ (ウ) P A
エ(エ) ~Q A
ウエ(オ) P&~Q ウエ&I
1 ウエ(カ)~(P&~Q)&
(P&~Q) イオ&I
1 ウ (キ) ~~Q エカRAA
1 ウ (ク) Q キDN
1 (ケ) P→ Q ウクCP
(ⅱ)
1 (1) P→Q A
2 (2) ~(~P∨Q) A
3(3) ~P A
3(4) ~P∨Q 3∨I
23(5) ~(~P∨Q)&
(~P∨Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
12 (8) Q 17MPP
12 (9) ~P∨Q 8∨I
12 (ア) ~(~P∨Q)&
(~P∨Q) 29&I
1 (イ)~~(~P∨Q) 2アRAA
1 (ウ) ~P∨Q イDN
従って、
(01)により、
(02)
① ~P∨Q(PでないかQである)。
② P→Q(Pならば、Qである)。
に於いて、
①=② であって、この「等式」を「含意の定義」といふ。
然るに、
(03)
(ⅲ)
1(1) Q A
1(2)~P∨Q 1∨I
1(3) P→Q 2含意の定義
従って、
(03)により、
(04)
③ Q├ P→Q
といふ「連式(Sequent)」は「妥当」であり、このことは、
③「任意の命題(Q)は、任意の仮言命題(P→Q)の後件(Q)である。」
といふことを、示してゐる。
然るに、
(05)
(ⅲ)
1(1) Q A
1(2) ~P∨Q 1∨I
1(3) P→Q 2含意の定義
(4)Q→(P→Q)
然るに、
(06)
系Ⅰ:任意の連式は、それがトートロジー的であるときまたそのときに限って導出可能である。
(E.J.レモン、論理学初歩、竹尾治一郎・浅野楢英 訳、1973年、114頁)
従って、
(05)(06)により、
(07)
③ Q→(P→Q)
③ Qならば(PならばQである)。
は「恒真式(トートロジー)」である。
従って、
(07)により、
(08)
③ 任意のQとPに於いて、
③ Q→(P→Q)
③ Qならば(PならばQである)。
は、「恒に、真(本当)」である。
従って、
(08)により、
(09)
P=太陽は東から昇る。
Q=バカボンのパパは天才である。
として、
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「仮言命題」は、「恒に、真(本当)」である。
然るに、
(10)
③ 太陽は東から昇る。
といふ「命題」は「真(本当)」である。
然るに、
(11)
③ Q→(P→Q)
が、「恒真式(トートロジー)」であるといふことは、
③ Q→(真→Q) であっても、
③ Q→(偽→Q) であっても、いづれにせよ、「真(本当)」である。
といふ、ことである。
然るに、
(12)
③ Q→(P→Q)
に於いて、
③ Q→(真→Q) であっても、
③ Q→(偽→Q) であっても、いづれにせよ、「真(本当)」である。
といふことは、
③ Qならば(Pであろうと、Pでなかろうと)Qである。
といふことである。
然るに、
(13)
③ Qならば(Pであろうと、Pでなかろうと)Qである。
といふことは、
③ QならばQである(同一律)。
と、「同じ」である。
従って、
(09)(13)により、
(14)
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「恒真式(トートロジー)」は、
③ バカボンのパパが天才であるならば、バカボンのパパは天才である。
といふ「同一律(Q→Q)」と「同じ」である。
然るに、
(15)
(ⅲ)
(1) Q→Q 定理導入の規則(TI)
(2)~Q∨Q 含意の定義
(ⅳ)
(1)~Q∨Q 定理導入の規則(TI)
(2) Q→Q 含意の定義
従って、
(15)により、
(16)
③ Q→Q (同一律)
④ ~Q∨Q (排中律)
に於いて、
③=④ である。
従って、
(14)(15)(16)により、
(17)
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「恒真式(トートロジー)」は、
③ バカボンのパパが天才であるならば、バカボンのパパは天才である。
といふ「同一律(Q→Q)」と「同じ」であって、
③ バカボンのパパが天才であるならば、バカボンのパパは天才である。
といふ「同一律(Q→Q)」は、
③ バカボンのパパは天才でないか、もしくは、バカボンのパパは天才である。
といふ「排中律(~Q∨Q)」と、「同じ」である。
然るに、
(18)
③ バカボンのパパは天才でないか、もしくは、バカボンのパパは天才である。
といふのであれば、
③ バカボンのパパは天才である。
とは、言へない。
従って、
(17)(18)により、
(19)
P=太陽は東から昇る。
Q=バカボンのパパは天才である。
として、
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「仮言命題」は、「恒に、真(本当)」であって、
③ 太陽は東から昇る。
といふ「命題」も「真(本当)」であるが、
③ バカボンのパパは天才である。
といふ「命題」は、「真(本当)」であるとは、限らない。
従って、
(04)(19)により、
(20)
③「任意の命題(Q)は、任意の仮言命題(P→Q)の後件(Q)である。」が、
③「後件(Q)の真偽(本当・ウソ)は、不明である。」
令和02年02月21日、毛利太。
0 件のコメント:
コメントを投稿