2021年5月10日月曜日

「象は鼻が(は・も)長い」の「述語論理」。

(01)
① 象は動物であるが、
① 机は動物ではない
従って、
(02)
①{象、机}であれば、
① 象動物である
然るに、
(03)
①{象、机}であれば、
動物は象である。
従って、
(02)(03)により、
(04)
①{象、机}であれば、
① 象動物であり、
動物は象である。
然るに、
(05)
(ⅱ)
1  (1)動物であるならば、象である。  仮定
 2 (2)         象でない。  仮定
  3(3)動物である。          仮定
1 3(4)         象である。  13肯定肯定式
123(5)   象でないが、象である。  24連言導入
12 (6)動物でない。          35背理法
1  (7)象でないならば、動物ではない。 26条件法
(ⅲ)
1  (1)象でないならば、動物ではない。 仮定
 2 (2)        動物である。  仮定
  3(3)象でない。           仮定
1 3(4)        動物でない。  13肯定肯定式
123(5) 動物であるが、動物でない。  24連言導入
12 (6)象でない、ではない。      35背理法
12 (7)象である。           6二重否定
1  (8)動物であるならば、象である。  27条件法
従って、
(05)により、
(06)
② 動物であるならば、象である。
③ 象でないならば、動物でない。
に於いて、
②=③ は、「対偶(Contraposition)」である。
従って、
(06)により、
(07)
② 動物は、象である。
③ 象以外は、動物でない。
に於いて、
②=③ は、「対偶(Contraposition)」である。
従って、
(04)~(07)により、
(08)
①{象、机}であれば、
① 象動物である。
動物は象である。
③ 象以外は、動物でない
といふ「命題」は、「3つ」とも、「真(本当)」である。
然るに、
(09)
①{象、机}ではなく、
④{象、□}であれば、
④ □の「正体」は、「不明」である。
従って、
(09)により、
(10)
④{象、□}であれば、
④(□はともかく、少なくとも)象動物である。
従って、
(08)(09)(10)により、
(11)
① 象動物である。
動物は象である。
③ 象以外は、動物でない
④ 象動物である。
に於いて、
①=②=③ であって、尚且つ、
①と④ は、「矛盾しない
然るに、
(12)
① 象動物である。
ならば、
④ 象動物ではない
といふことは、有り得ない
従って、
(12)により、
(13)
① 象動物である。
ならば、
④ 象動物である。
従って、
(11)(12)(13)により、
(14)
① 象動物である。
② 象動物であり、動物は象である。
③ 象動物であり、象以外は動物でない
に於いて、
①=②=③ である。
従って、
(14)により、
(15)
① 鼻長い。
② 鼻長く、長いのは鼻である。
③ 鼻長く、鼻以外は長くない
に於いて、
①=②=③ である。
従って、
(15)により、
(16)
① 象は、鼻長い。
② 象は、鼻は長く、長いのは鼻である。
③ 象は、鼻は長く、鼻以外は長くない
に於いて、
①=②=③ である。
然るに、
(17)
 沢田『現代論理学入門』ニ九ぺから―
さらに、日常の言語は人間同士のコミュニケーションということを最大の目的としている以上、できるだけ短い時間の中で多くの情報を伝えることが一つの大切な目標とされる。そこでたとえば「象は鼻が長い」というような表現は、象が主語なのか、鼻が主語なのかはっきりしないから、このままではその論理的構造が明示されていない。いわば非論理的な文章である、というひともある。しかしこの文の論理的な構造をはっきりと文章にあらわして「すべてのxについて、もしそのxが象であるならば、yなるものが存在し、そのyは鼻であり、xはyを所有しており、このyは長い」といえばいいかもしれない。しかし日常言語によるコミュニケーションでは、たとえば動物園で象をはじめて見た小学生が、父親にむかってこのような文章で話しかけたとすれば、その子供は論理的であるといって感心されるまえに社会人としての常識をうたがわれるにきまっている。常識(すなはち共通にもっている情報)でわかっているものはいちいち言明の中にいれないで、いわば暗黙の了解事項として、省略し、できるだけ短い記号の組み合せで、できるだけ多くの情報を伝えることが日常言語の合理性の一つである(三上章、日本語の論理、1963年、25・26頁)。
従って、
(17)により、
(18)
① 象は鼻_長い。
に関して、
① 象は鼻_長い。⇔
① ∀x{象x→∃y(鼻yx&長y)}⇔
① すべてのxについて{xが象であるならば、あるyはxの鼻であって、長い}⇔
すべてのxについて、もしそのxが象であるならば、yなるものが存在し、そのyは鼻であり、xはyを所有しており、このyは長い
といふ「等式」が、成立する。
従って、
(16)(18)により、
(19)
① 象は、鼻長い。⇔
① 象は、鼻は長く、鼻以外は長くない。⇔
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}⇔
① すべてのxについて{xが象であるならば、あるyはxの鼻であって、長く、すべてのzについて(zがxの鼻でないならば、zは長くない)}。
といふ「等式」が、成立する。
然るに、
(20)
(ⅰ)
1 (1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
1 (2)   象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z)  1UE
 3(3)   象a                          A
13(4)      ∃y(鼻ya&長y)&∀z(~鼻za→~長z)  23MPP
13(5)      ∃y(鼻ya&長y)               4&E
13(6)                 ∀z(~鼻za→~長z)  4&E
13(7)                    ~鼻ca→~長c   1UE
13(8)                     鼻ca∨~長c   7含意の定義
13(9)                   ~(~鼻ca&長c)  8ド・モルガンの法則
13(ア)                 ∀z~(~鼻za&長z)  9UI
13(イ)                 ~∃z(~鼻za&長z)  ア量化子の関係
13(ウ)      ∃y(鼻ya&長y)&~∃z(~鼻za&長z)  5イ&I
1 (エ)   象a→∃y(鼻ya&長y)&~∃z(~鼻za&長z)  3ウCP
1 (オ)∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)} エUI
(ⅱ)
1 (1)∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)} A
1 (2)   象a→∃y(鼻ya&長y)&~∃z(~鼻za&長z)  1UE
 3(3)   象a                          A
13(4)      ∃y(鼻ya&長y)&~∃z(~鼻za&長z)  23MPP
13(5)      ∃y(鼻ya&長y)               4&E
13(6)                 ~∃z(~鼻za&長z)  4&E
13(7)                 ∀z~(~鼻za&長z)  6量化子の関係
13(8)                   ~(~鼻ca&長c)  7UI
13(9)                     鼻ca∨~長c   8ド・モルガンの法則
13(ア)                    ~鼻ca→~長c   9含意の定義
13(イ)                 ∀z(~鼻za→~長z)  アUI
13(ウ)      ∃y(鼻ya&長y)&∀z(~鼻za→~長z)  5イ&I
1 (エ)   象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z)  3ウCP
1 (オ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} エUI
従って、
(21)
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}
② ∀x{象x→∃y(鼻yx&長y)&~∃z(~鼻zx&長z)}
に於いて、
①=② である。
従って、
(21)により、
(22)
① ∀x{象x→∃y(鼻yx&長y)&~∀z(~鼻zx→~長z)}
② ∀x{象x→∃y(鼻yx&長y)&~~∃z(~鼻zx&長z)}
に於いて、
①=② である。
従って、
(22)により、
(23)
「二重否定律」により、
① ∀x{象x→∃y(鼻yx&長y)&~∀z(~鼻zx→~長z)}
② ∀x{象x→∃y(鼻yx&長y)&  ∃z(~鼻zx&長z)}
に於いて、
①=② である。
然るに、
(24)
② 象は、鼻_長い。⇔
② ∀x{象x→∃y(鼻yx&長y)&∃z(~鼻zx&長z)}⇔
② すべてのxについて{xが象であるならば、あるyはxの鼻であって、長く、あるzは(xの鼻ではないが、長い)}。
とするならば、すなはち、
② 象は、鼻は長く、鼻以外も長い。
とするならば、
② 象は、鼻長い。
でなければ、ならない。
従って、
(18)(19)(24)により、
(25)
① 象は、鼻長い≡∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
② 象は、鼻長い≡∀x{象x→∃y(鼻yx&長y)&∃z(~鼻zx& 長z)}。
といふ「等式」が、成立する。
従って、
(25)により、
(26)
③ 象は、鼻_長い≡∀x{象x→∃y(鼻yx&長y)}。
であるならば、
① 象は、鼻長い≡∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
ではないし
② 象は、鼻長い≡∀x{象x→∃y(鼻yx&長y)&∃z(~鼻zx& 長z)}。
でもない
従って、
(26)により、
(27)
③ 象は、鼻_長い≡∀x{象x→∃y(鼻yx&長y)}。
の場合は、
③ 象は、鼻長い≡∀x{象x→∃y(鼻yx&長y)}。
でなければ、ならない
従って、
(23)(26)(27)により、
(28)
「番号」を付け直すと、
① 象は、鼻長い≡∀x{象x→∃y(鼻yx&長y)}。
② 象は、鼻長い≡∀x{象x→∃y(鼻yx&長y)& ∀z(~鼻zx→~長z)}。
③ 象は、鼻長い≡∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
といふ「等式」が、成立する。
令和03年05月10日、毛利太。

0 件のコメント:

コメントを投稿