―「一昨日(令和元年07月17日)」の記事を「補足」します。―
― 長い間、「返り点」に関する「記事」を書いてゐません。「返り点と括弧」に関しては、
(α)「返り点」と「括弧」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_11.html)
(β)「返り点」と「括弧」の条件。 :(https://kannbunn.blogspot.com/2017/12/blog-post_15.html)
(γ)「返り点」と「括弧」の条件(Ⅱ):(https://kannbunn.blogspot.com/2017/12/blog-post_16.html)
(δ)「返り点」は、下には戻らない。 :(https://kannbunn.blogspot.com/2017/12/blog-post_20.html)
(ε)「下中上点」等が必要な「理由」。:(https://kannbunn.blogspot.com/2017/12/blog-post_22.html)
(ζ)「返り点・モドキ」について。 :(https://kannbunn.blogspot.com/2017/12/blog-post_24.html)⇒
Web上には存在しますが、何故か、アクセス出来ません。
(η)「一二点・上下点」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_26.html)
(θ)「括弧」の「順番」。 :(https://kannbunn.blogspot.com/2018/01/blog-post.html)
(ι)「返り点」と「括弧」の関係 :(https://kannbunn.blogspot.com/2019/01/blog-post_21.html)
等々、「その他、諸々」を、お読み下さい。―
(01)
〈ヤフー!知恵袋、質問〉
twi********さん2008/9/1413:49:40
ド・モルガンの法則について
ド・モルガンの法則をほとんど日本語だけで説明できますか?
(02)
「日本語」だけで言ふと、
① PとQの、少なくとも、一方はウソである。
② PとQが、両方とも本当である。といふことはない。
に於いて、
①=② であるならば、「ド・モルガンの法則(Ⅰ)」は「正しい」。
(03)
③ PとQは、両方とも、ウソである。
④ PとQの、どちらか一方が、本当である。といふことはない。
に於いて、
③=④ であるならば、「ド・モルガンの法則(Ⅱ)」は「正しい」。
(04)
① PとQの、少なくとも、一方はウソである。
② PとQが、両方とも本当である。といふことはない。
③ PとQは、両方とも、ウソである。
④ PとQの、どちらか一方が、本当である。といふことはない。
を、「論理語(Logical term)」で書くと、
① ~P∨~Q
② ~(P& Q)
③ ~P&~Q
④ ~(P∨ Q)
といふ「式」になる。
従って、
(05)
① ~P∨~Q =PとQの、少なくとも、一方はウソである。
② ~(P& Q)=PとQが、両方とも本当である。といふことはない。
③ ~P&~Q =PとQは、両方とも、ウソである。
④ ~(P∨ Q)=PとQの、どちらか一方が、本当である。といふことはない。
に於いて、
①=② であって、
③=④ であって、
このことを、「ド・モルガンの法則」と言ふ。
然るに、
(06)
① ~P∨~Q
② ~(P& Q)
③ ~P&~Q
④ ~(P∨ Q)
に於いて、
①=② であって、
③=④ である。
といふことを、「命題計算(Propositional calculation)」で示すと、次(06)の通りである。
(07)
(ⅰ)
1 (1) ~P∨~Q A
2 (2) P& Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6)~(P& Q) 25RAA
7(7) ~Q A
2 (8) Q 2&E
2 7(9) ~Q&Q 78&E
7(ア)~(P& Q) 29RAA
1 (イ)~(P& Q) 1367ア
(ⅱ)
1 (1) ~( P& Q) A
2 (2) ~(~P∨~Q) A
3 (3) ~P A
3 (4) ~P∨~Q 3∨I
23 (5) ~(~P∨~Q)&
(~P∨~Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
8(8) ~Q A
8(9) ~P∨~Q 8∨I
2 8(ア) ~(~P∨~Q)&
(~P∨~Q) 29&I
2 (イ) ~~Q 8DN
2 (ウ) Q イDN
2 (エ) P& Q 2ウ&I
12 (オ) ~( P& Q)&
( P& Q) 1エ&I
1 (カ)~~(~P∨~Q) 2オRAA
1 (キ) ~P∨~Q カDN
(ⅲ)
1 (1) ~P&~Q A
2 (2) P∨ Q A
1 (3) ~P 1&E
4 (4) P A
1 4 (5) ~P&P 34&I
4 (6)~(~P&~Q) 15RAA
1 (7) ~Q 1&E
8(8) Q A
1 8(9) ~Q&Q 78&I
8(ア)~(~P&~Q) 19RAA
2 (イ)~(~P&~Q) 2468ア∨E
12 (ウ)~(~P&~Q)&
(~P&~Q) 1イ&I
1 (エ) ~(P∨ Q) 2ウRAA
(ⅳ)
1 (1) ~(P∨ Q) A
2 (2) P A
2 (3) P∨ Q 2∨I
12 (4) ~(P∨ Q)&
(P∨ Q) 13&I
1 (5) ~P 24RAA
6 (6) Q A
6 (7) P∨ Q 6∨I
1 6 (8) ~(P∨ Q)&
(P∨ Q) 17&I
1 (9) ~Q 68RAA
1 (ア) ~P&~Q 59&I
(08)
① ~P∨~Q∨~R
② ~(P& Q∨ R)
③ ~P&~Q&~R
④ ~(P∨ Q∨ R)
に於いて、
①=② であって、
③=④ である。
といふことを、「命題計算」で示すと、次(08)の通りである。
(09)
(ⅰ)
1 (1) ~P∨~Q∨~R A
2 (2) P& Q& R A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6)~(P& Q& R) 25RAA
7 (7) ~Q A
2 (8) Q 2&E
2 7 (9) ~Q&Q 78&E
7 (ア)~(P& Q& R) 29RAA
イ(イ) ~R A
2 (ウ) R 2&E
2 イ(エ) ~R&R イウ&I
イ(オ)~(P& Q& R) 2エRAA
1 (カ)~(P& Q& R) 1367アイオ∨E
(ⅱ)
1 (1) ~( P& Q &R) A
2 (2) ~(~P∨~Q∨~R) A
3 (3) ~P A
3 (4) ~P∨~Q 3∨I
3 (5) ~P∨~Q∨~R 4∨I
23 (6) ~(~P∨~Q∨~R)&
(~P∨~Q∨~R) 25&I
2 (7) ~~P 36RAA
2 (8) P 7DN
9 (9) ~Q A
9 (ア) ~P∨~Q 9∨I
9 (イ) ~P∨~Q∨~R ア∨I
2 9 (ウ) ~(~P∨~Q∨~R)&
(~P∨~Q∨~R) 2イ&I
2 (エ) ~~Q 9ウRAA
2 (オ) Q エDN
カ(カ) ~R A
カ(キ) ~Q∨~R カ∨I
カ(ク) ~P∨~Q∨~R キ∨I
2 カ(ケ) ~(~P∨~Q∨~R)&
(~P∨~Q∨~R) 2ク&I
2 (コ) ~~R カケRAA
2 (サ) R コDN
2 (シ) P& Q 8オ&I
2 (ス) P& Q& R サシ&I
12 (セ) ~( P& Q& R)&
( P& Q R) 1ス&I
1 (ソ)~~(~P∨~Q∨~R) 2セRAA
1 (タ) ~P∨~Q∨~R ソDN
(ⅲ)
1 (1) ~P&~Q&~R A
2 (2) P∨ Q∨ R A
1 (3) ~P 1&E
4 (4) P A
1 4 (5) ~P&P 34&I
4 (6)~(~P&~Q&~R) 15RAA
1 (7) ~Q 1&E
8 (8) Q A
1 8 (9) ~Q&Q 78&I
8 (ア)~(~P&~Q&~R) 19RAA
1 (イ) ~R 1&E
ウ(ウ) R A
1 ウ(エ) ~R&R イウ&I
ウ(オ)~(~P&~Q&~R) 1エRAA
2 (カ)~(~P&~Q&~R) 2468アウオ∨E
12 (キ)~(~P&~Q&~R)&
(~P&~Q&~R) 1カ&I
1 (ク) ~(P∨ Q∨ R) 1キRAA
(ⅳ)
1 (1) ~(P∨ Q∨ R) A
2 (2) P A
2 (3) P∨ Q 2∨I
2 (4) P∨ Q∨ R 3∨I
12 (5) ~(P∨ Q∨ R)&
(P∨ Q∨ R) 14&I
1 (6) ~P 25RAA
7 (7) Q A
7 (8) P∨ Q 7∨I
7 (9) P∨ Q∨ R 8∨I
1 7 (ア) ~(P∨ Q∨ R)&
(P∨ Q∨ R) 19&I
1 (イ) ~Q 7アRAA
ウ (エ) R A
ウ (オ) Q∨ R エ∨I
ウ (カ) P∨ Q∨ R オ∨I
1 ウ (キ) ~(P∨ Q∨ R)&
(P∨ Q∨ R) 1カ&I
1 (ク) ~R エキRAA
1 (ケ) ~P&~Q 6イ&I
1 (コ) ~P&~Q&~R クケ&I
然るに、
(07)~(09)により、
(10)
「同じこと(計算)」を、繰り返し、行へば良いため、
① ~P∨~Q∨~R∨~S
② ~(P& Q∨ R∨ S)
③ ~P&~Q&~R&~S
④ ~(P∨ Q∨ R∨ S)
に於いても、
①=② であって、
③=④ である。
然るに、
(11)
① PとQとRのうちの、少なくとも、1つはウソである。
② PとQとRが、3つとも本当である。といふことはない。
③ PとQとRは、3つとも、ウソである。
④ PとQとRの、どれらか1つが、本当である。といふことはない。
に於いて、明らかに、
①=② であって、
③=④ である。
従って、
(05)(08)(09)(11)により、
(12)
① ~P∨~Q =PとQの、少なくとも、一方はウソである。
② ~(P& Q)=PとQが、両方とも本当である。といふことはない。
③ ~P&~Q =PとQは、両方とも、ウソである。
④ ~(P∨ Q)=PとQの、どちらか一方が、本当である。といふことはない。
並びに、
① ~P∨~Q∨~R =PとQとRのうちの、少なくとも、1つはウソである。
② ~(P& Q& R)=PとQとRが、3つとも本当である。といふことはない。
③ ~P&~Q&~R =PとQとRは、3つとも、ウソである。
④ ~(P∨ Q∨ R)=PとQとRの、どれらか1つが、本当である。といふことはない。
に於いて、
①=② であって、
③=④ であって、
このことを、「ド・モルガンの法則」と言ふ。
然るに、
(13)
①「被告の主張」と「原告の主張」のうち、少なくとも、一方は「ウソ」である。
②「原告の主張」と「被告の主張」が、両方とも「本当」である。といふことはない。
といふ「命題(日本語)」に於いて、
①=② である。
といふことを、「理解」できない日本人は、ほとんど、ゐないはずである。
従って、
(14)
① ~P∨~Q=~(P&Q)
③ ~P&~Q=~(P∨Q)
といふ「ド・モルガンの法則」は、「命題」として、「言葉(日本語)」で言ふと、「メチャクチャ、簡単」である。
然るに、
(15)
高校生にとっての「ド・モルガンの法則」は、
のやうな「ベン図」を用ひての、「集合同士の関係」であるため、
①「被告の主張」と「原告の主張」のうち、少なくとも、一方は「ウソ」である。
②「原告の主張」と「被告の主張」が、両方とも「本当」である。といふことはない。
といふ「命題」に於いて、
①=② である。
といふことを、「理解」できたとしても、「ベン図」で説明される「ド・モルガンの法則」を、理解できるとは、限らない。
(16)
① ~P∨~Q =PとQの、少なくとも、一方はウソである。⇔
② ~(P& Q)=PとQが、両方とも本当である。といふことはない。
だけでなく、当然、
① P∨ Q =PとQの、少なくとも、一方は本当である。⇔
② ~(~P&~Q)=PとQが、両方ともウソである。といふことはない。
の場合も、「ド・モルガンの法則」である。
令和元年07月19日、毛利太。
0 件のコメント:
コメントを投稿