(01)― 長い間、「返り点」に関する「記事」を書いてゐません。「返り点と括弧」に関しては、
(α)「返り点」と「括弧」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_11.html)
(β)「返り点」と「括弧」の条件。 :(https://kannbunn.blogspot.com/2017/12/blog-post_15.html)
(γ)「返り点」と「括弧」の条件(Ⅱ):(https://kannbunn.blogspot.com/2017/12/blog-post_16.html)
(δ)「返り点」は、下には戻らない。 :(https://kannbunn.blogspot.com/2017/12/blog-post_20.html)
(ε)「下中上点」等が必要な「理由」。:(https://kannbunn.blogspot.com/2017/12/blog-post_22.html)
(ζ)「返り点・モドキ」について。 :(https://kannbunn.blogspot.com/2017/12/blog-post_24.html)⇒
Web上には存在しますが、何故か、アクセス出来ません。
(η)「一二点・上下点」に付いて。 :(https://kannbunn.blogspot.com/2017/12/blog-post_26.html)
(θ)「括弧」の「順番」。 :(https://kannbunn.blogspot.com/2018/01/blog-post.html)
(ι)「返り点」と「括弧」の関係 :(https://kannbunn.blogspot.com/2019/01/blog-post_21.html)
等々、「その他、諸々」を、お読み下さい。―
(01)
〈ヤフー!知恵袋、質問〉
twi********さん2008/9/1413:49:40
ド・モルガンの法則について
ド・モルガンの法則をほとんど日本語だけで説明できますか?
(02)
「論理語(Logical term)」で書くと、
① ~P∨~Q
② ~(P& Q)
に於いて、
①=② である。
従って、
(02)により、
(03)
「日本語(Japanese)」だけで言ふと、
① PとQの、少なくとも、一方はウソである。
② PとQが、両方とも本当である。といふことはない。
に於いて、
①=② である。
従って、
(02)(03)により、
(04)
① ~P∨~Q =PとQの、少なくとも、一方はウソである。
② ~(P& Q)=PとQが、両方とも本当である。といふことはない。
に於いて、
①=② である。
(05)
「論理語(Logical term)」で書くと、
③ ~P&~Q
④ ~(P∨ Q)
に於いて、
③=④ である。
(06)
「日本語(Japanese)」だけで言ふと、
③ PとQは、両方とも、ウソである。
④ PとQの、どちらか一方が、本当である。といふことはない。
に於いて、
③=④ である。
従って、
(05)(06)により、
(07)
③ ~P&~Q =PとQは、両方とも、ウソである。
④ ~(P∨ Q)=PとQの、どちらか一方が、本当である。といふことはない。
に於いて、
③=④ である。
従って、
(04)(07)により、
(08)
① ~P∨~Q =PとQの、少なくとも、一方はウソである。
② ~(P& Q)=PとQが、両方とも本当である。といふことはない。
③ ~P&~Q =PとQは、両方とも、ウソである。
④ ~(P∨ Q)=PとQの、どちらか一方が、本当である。といふことはない。
に於いて、
①=② であって、
③=④ であって、
このことを、「ド・モルガンの法則」と言ふ。
然るに、
(09)
(ⅰ)
1 (1) ~P∨~Q A
2 (2) P& Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6)~(P& Q) 25RAA
7(7) ~Q A
2 (8) Q 2&E
2 7(9) ~Q&Q 78&E
7(ア)~(P& Q) 29RAA
1 (イ)~(P& Q) 1367ア
(ⅱ)
1 (1) ~( P& Q) A
2 (2) ~(~P∨~Q) A
3 (3) ~P A
3 (4) ~P∨~Q 3∨I
23 (5) ~(~P∨~Q)&
(~P∨~Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
8(8) ~Q A
8(9) ~P∨~Q 8∨I
2 8(ア) ~(~P∨~Q)&
(~P∨~Q) 29&I
2 (イ) ~~Q 8DN
2 (ウ) Q イDN
2 (エ) P& Q 2ウ&I
12 (オ) ~( P& Q)&
( P& Q) 1エ&I
1 (カ)~~(~P∨~Q) 2オRAA
1 (キ) ~P∨~Q カDN
(ⅲ)
1 (1) ~P&~Q A
2 (2) P∨ Q A
1 (3) ~P 1&E
4 (4) P A
1 4 (5) ~P&P 34&I
4 (6)~(~P&~Q) 15RAA
1 (7) ~Q 1&E
8(8) Q A
1 8(9) ~Q&Q 78&I
8(ア)~(~P&~Q) 19RAA
2 (イ)~(~P&~Q) 2468ア∨E
12 (ウ)~(~P&~Q)&
(~P&~Q) 1イ&I
1 (エ) ~(P∨ Q) 2ウRAA
(ⅳ)
1 (1) ~(P∨ Q) A
2 (2) P A
2 (3) P∨ Q 2∨I
12 (4) ~(P∨ Q)&
(P∨ Q) 13&I
1 (5) ~P 24RAA
6 (6) Q A
6 (7) P∨ Q 6∨I
1 6 (8) ~(P∨ Q)&
(P∨ Q) 17&I
1 (9) ~Q 68RAA
1 (ア) ~P&~Q 59&I
従って、
(09)により、
(10)
① ~P∨~Q=~(P&Q)
③ ~P&~Q=~(P∨Q)
といふ「ド・モルガンの法則」が、成立する。
従って、
(08)(09)(10)により、
(11)
① ~P∨~Q=~(P&Q)
③ ~P&~Q=~(P∨Q)
といふ「ド・モルガンの法則」は、「命題論理」としても、「日本語」としても、「正しい」。
然るに、
(12)
例へば、
①「被告の主張」と「原告の主張」のうち、少なくとも、一方は「ウソ」である。
②「原告の主張」と「被告の主張」が、両方とも「本当」である。といふことはない。
といふ「命題」に於いて、
①=② である。
といふことを、「理解」できない高校生は、ゐないはずである。
然るに、
(13)
高校生にとっての「ド・モルガンの法則」は、
といふやうな「ベン図」を用ひての、「集合同士の関係」であるため、
①「被告の主張」と「原告の主張」のうち、少なくとも、一方は「ウソ」である。
②「原告の主張」と「被告の主張」が、両方とも「本当」である。といふことはない。
といふ「命題」に於いて、
①=② である。
といふことを、「理解」できたとしても、「ベン図」で説明される「ド・モルガンの法則」を、理解できるとは、限らない。
然るに、
(14)
(ⅰ)
1 (1) ~P∨~Q A
2 (2) P& Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6)~(P& Q) 25RAA
7(7) ~Q A
2 (8) Q 2&E
2 7(9) ~Q&Q 78&E
7(ア)~(P& Q) 29RAA
1 (イ)~(P& Q) 1367ア
といふ「命題計算」を、「日本語」だけで言ふと、
1 (1)Pがウソであるか、Qがウソである。 と仮定する。
2 (2)Pは本当であるし、Qも本当である。 と仮定する。
3 (3)Pはウソである。 と仮定する。
2 (4)Pは本当である。 理由は、2。
23 (5)Pはウソであり、Pは本当である。 理由は、3と4。
3 (6)Pは本当であるし、Qも本当である。 といふ「仮定」は「マチガイ」である。理由は、2と5。
7(7)Qはウソである。 と仮定する。
2 (8)Qは本当である。 理由は、2。
2 7(9)Qはウソであり、Qは本当である。 理由は、7と8。
7(ア)Pは本当であるし、Qも本当である。 といふ「仮定」は「マチガイ」である。理由は、2と9。
1 (イ)Pは本当であるし、Qも本当である。 といふことはない。 理由は、1367ア。
といふ、ことになる。
従って、
(12)(13)(14)により、
(15)
「日本語」と「ベン図」と、「命題論理(自然演繹)」を比較するならば、
「日本語」と「命題論理(自然演繹)」は、「ほぼ、同じ」であるものの、
「日本語」と「ベン図」は、「全く、似てゐない」。
従って、
(16)
「(高校数学としての)集合」が苦手な生徒がゐたとしても、その生徒が、同じやうに、「論理学」が苦手であるとは、限らない。
令和元年07月18日、毛利太。
0 件のコメント:
コメントを投稿